Henry James Andrew
Institute of Biomedical Sciences, London, United Kingdom.
Front Artif Intell. 2025 Aug 1;8:1496937. doi: 10.3389/frai.2025.1496937. eCollection 2025.
The manuscript "Population Health Management (PHM) Human Phenotype Ontology (HPO) Policy for Ecosystem Improvement" steward safe science and secure technology in medical reform. The digital HPO policy advances Biological Modelling (BM) capacity and capability in a series of fair classifications. Public trust in the PHM of HPO is a vision of public health and patient safety, with a primary goal of socioeconomic success sustained by citizen privacy and trust within an ecosystem of predictor equality and intercept parity.
Science and technology security evaluation, resource allocation, and appropriate regulation are essential for establishing a solid foundation in a safe ecosystem. The AI Security Institute collaborates with higher experts to assess BM cybersecurity and privacy. Within this ecosystem, resources are allocated to the Genomic Medical Sciences Cluster and AI metrics that support safe HPO transformations. These efforts ensure that AI digital regulation acts as a service appropriate to steward progressive PHM.
The manuscript presents a five-point mission for the effective management of population health. A comprehensive national policy for phenotype ontology with Higher Expert Medical Science Safety stewards reform across sectors. It emphasizes developing genomic predictors and intercepts, authorizing predictive health pre-eXams and precise care eXams, adopting Generative Artificial Intelligence classifications, and expanding the PHM ecosystem in benchmark reforms.
Discussions explore medical reform focusing on public health and patient safety. The nation's safe space expansions with continual improvements include steward developing, authorizing, and adopting digital BM twins. The manuscript addresses international classifications where the global development of PHM enables nations to choose what to authorize for BM points of need. These efforts promote channels for adopting HPO uniformity, transforming research findings into routine phenotypical primary care practices.
This manuscript charts the UK's and global PHM's ecosystem expansion, designing HPO policies that steward the modeling of biology in personal classifications. It develops secure, safe, fair, and explainable BM for public trust in authorized classifiers and promotes informed choices regarding what nations and individuals adopt in a cooperative PHM progression. Championing equitable classifications in a robust ecosystem sustains advancements in population health outcomes for economic growth and public health betterment.
《人口健康管理(PHM)人类表型本体论(HPO)促进生态系统改善的政策》一文在医疗改革中确保科学安全和技术安全。数字HPO政策在一系列公平分类中提升了生物建模(BM)的能力。公众对HPO的PHM的信任是公共卫生和患者安全的愿景,其主要目标是在预测平等和拦截均等的生态系统中,通过公民隐私和信任实现社会经济的持续成功。
科学技术安全评估、资源分配和适当监管对于在安全的生态系统中建立坚实基础至关重要。人工智能安全研究所与高级专家合作评估BM网络安全和隐私。在这个生态系统中,资源被分配给基因组医学科学集群和支持安全HPO转型的人工智能指标。这些努力确保人工智能数字监管作为一种服务,适用于管理渐进式的PHM。
本文提出了有效管理人口健康的五点任务。一项全面的国家表型本体论政策,由高级医学科学安全专家负责跨部门改革。它强调开发基因组预测因子和拦截手段,授权进行预测性健康预检查和精准护理检查,采用生成式人工智能分类,并在基准改革中扩大PHM生态系统。
讨论探讨了以公共卫生和患者安全为重点的医疗改革。随着不断改进,国家的安全空间扩展包括管理开发、授权和采用数字BM双胞胎。本文讨论了国际分类,其中PHM的全球发展使各国能够选择授权哪些BM需求点。这些努力促进了采用HPO统一标准的渠道,将研究结果转化为常规表型初级护理实践。
本文描绘了英国和全球PHM生态系统的扩展,设计了HPO政策,以管理个人分类中的生物学建模。它为公众对授权分类器的信任开发安全、可靠、公平且可解释的BM,并促进各国和个人在合作性PHM进程中做出明智选择。在强大的生态系统中倡导公平分类,可维持人口健康成果的进步,以促进经济增长和改善公共卫生。