Suppr超能文献

什么使临床机器学习公平?一个实用的伦理框架。

What makes clinical machine learning fair? A practical ethics framework.

作者信息

Hoche Marine, Mineeva Olga, Rätsch Gunnar, Vayena Effy, Blasimme Alessandro

机构信息

Department of Computer Science. Biomedical Informatics Group, ETH Zurich, Zurich, Switzerland.

AI Center, ETH Zurich, Zurich, Switzerland.

出版信息

PLOS Digit Health. 2025 Mar 18;4(3):e0000728. doi: 10.1371/journal.pdig.0000728. eCollection 2025 Mar.

Abstract

Machine learning (ML) can offer a tremendous contribution to medicine by streamlining decision-making, reducing mistakes, improving clinical accuracy and ensuring better patient outcomes. The prospects of a widespread and rapid integration of machine learning in clinical workflow have attracted considerable attention including due to complex ethical implications-algorithmic bias being among the most frequently discussed ML models. Here we introduce and discuss a practical ethics framework inductively-generated via normative analysis of the practical challenges in developing an actual clinical ML model (see case study). The framework is usable to identify, measure and address bias in clinical machine learning models, thus improving fairness as to both model performance and health outcomes. We detail a proportionate approach to ML bias by defining the demands of fair ML in light of what is ethically justifiable and, at the same time, technically feasible in light of inevitable trade-offs. Our framework enables ethically robust and transparent decision-making both in the design and the context-dependent aspects of ML bias mitigation, thus improving accountability for both developers and clinical users.

摘要

机器学习(ML)可以通过简化决策过程、减少错误、提高临床准确性并确保更好的患者预后,为医学做出巨大贡献。机器学习在临床工作流程中广泛且迅速整合的前景已引起相当大的关注,这其中包括由于复杂的伦理影响——算法偏差是最常被讨论的机器学习模型之一。在此,我们介绍并讨论一个通过对开发实际临床机器学习模型中的实际挑战进行规范分析而归纳生成的实用伦理框架(见案例研究)。该框架可用于识别、衡量和解决临床机器学习模型中的偏差,从而在模型性能和健康结果方面提高公平性。我们通过根据伦理上合理的要求以及鉴于不可避免的权衡在技术上可行的要求来定义公平机器学习的需求,详细阐述了一种针对机器学习偏差的相称方法。我们的框架能够在减轻机器学习偏差的设计和与上下文相关的方面实现符合伦理的稳健且透明的决策,从而提高开发者和临床用户的问责制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ee6/11918422/bd9df3886c1f/pdig.0000728.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验