Suppr超能文献

成人脓毒症中枢纽基因的鉴定及ceRNA网络的预测

Identification of hub genes and prediction of the ceRNA network in adult sepsis.

作者信息

Xue Kangyi, Wu Kan, Luo Haoxian, Luo Haihua, Zhong Zhaoqian, Li Fen, Li Lei, Chen Li

机构信息

Department of Urology, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong Province, China.

Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China.

出版信息

PeerJ. 2025 Aug 13;13:e19619. doi: 10.7717/peerj.19619. eCollection 2025.

Abstract

BACKGROUND

Sepsis refers to a dysregulated host immune response to infection. It carries a high risk of morbidity and mortality, and its pathogenesis has yet to be fully elucidated. The main aim of this study was to identify prognostic hub genes for sepsis and to predict a competitive endogenous RNA (ceRNA) network that regulates the hub genes.

METHODS

Six transcriptome datasets from the peripheral blood of septic patients were retrieved from the Gene Expression Omnibus (GEO) database. The robust rank aggregation (RRA) method was used to screen differentially expressed genes (DEGs) across these datasets. A comprehensive bioinformatics investigation was conducted, encompassing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses using the "clusterProfiler" package in R, as well as gene set enrichment analysis (GSEA) to further elucidate the biological functions and pathways associated with the DEGs. Weighted gene co-expression network analysis (WGCNA) was performed to identify a module significantly associated with sepsis. Integration of this module with protein-protein interaction (PPI) network analysis facilitated the identification of five hub genes. These hub genes were subsequently validated using an independent dataset and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis of peripheral blood samples from septic patients. The prognostic values of these hub genes were assessed receiver operating characteristic (ROC) curve analysis. Finally, a ceRNA network regulating the prognostic hub genes was constructed by integrating data from a literature review as well as five online databases.

RESULTS

RRA analysis identified 164 DEGs across six training cohorts. Bioinformatics analyses revealed concurrent hyperinflammation and immunosuppression in sepsis patients. Five hub genes were identified WGCNA and PPI network analysis, and their differential expression was verified by the validation dataset (GSE28750) and RT-qPCR analysis in the peripheral blood of septic patients. ROC analysis confirmed four hub genes with prognostic value, and a ceRNA network was predicted to elucidate their regulatory mechanisms.

CONCLUSION

This study identified four hub genes (CLEC4D, GPR84, S100A12, and HK3) with significant prognostic value in sepsis and predicted a ceRNA network (NEAT1-hsa-miR-495-3p-ELF1) regulating their expression. The integrated analysis reconfirmed the concurrent presence of hyperinflammation and immunosuppression in hospitalized sepsis patients. These findings enhance the understanding of sepsis pathogenesis and identify potential therapeutic targets.

摘要

背景

脓毒症是指宿主对感染的免疫反应失调。它具有较高的发病和死亡风险,其发病机制尚未完全阐明。本研究的主要目的是确定脓毒症的预后关键基因,并预测调控这些关键基因的竞争性内源性RNA(ceRNA)网络。

方法

从基因表达综合数据库(GEO)中检索了6个脓毒症患者外周血的转录组数据集。采用稳健秩聚合(RRA)方法筛选这些数据集中的差异表达基因(DEG)。进行了全面的生物信息学研究,包括使用R语言中的“clusterProfiler”包进行基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路富集分析,以及基因集富集分析(GSEA),以进一步阐明与DEG相关的生物学功能和通路。进行加权基因共表达网络分析(WGCNA)以识别与脓毒症显著相关的模块。将该模块与蛋白质-蛋白质相互作用(PPI)网络分析相结合,有助于识别5个关键基因。随后使用独立数据集和对脓毒症患者外周血样本进行逆转录定量聚合酶链反应(RT-qPCR)分析来验证这些关键基因。通过受试者工作特征(ROC)曲线分析评估这些关键基因的预后价值。最后,通过整合文献综述数据以及5个在线数据库构建了调控预后关键基因的ceRNA网络。

结果

RRA分析在6个训练队列中鉴定出164个DEG。生物信息学分析揭示了脓毒症患者同时存在过度炎症和免疫抑制。通过WGCNA和PPI网络分析鉴定出5个关键基因,其差异表达在验证数据集(GSE28750)和脓毒症患者外周血的RT-qPCR分析中得到验证。ROC分析证实了4个具有预后价值的关键基因,并预测了一个ceRNA网络以阐明其调控机制。

结论

本研究鉴定出4个在脓毒症中具有显著预后价值的关键基因(CLEC4D、GPR84、S100A12和HK3),并预测了一个调控其表达的ceRNA网络(NEAT1-hsa-miR-495-3p-ELF1)。综合分析再次证实住院脓毒症患者同时存在过度炎症和免疫抑制。这些发现增进了对脓毒症发病机制的理解,并确定了潜在的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2f9/12357545/bb4cd37d47e3/peerj-13-19619-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验