Poulton Anna J, Ellner Stephen P
Center for Applied Mathematics, Cornell University, Ithaca, NY, 14853, USA.
Institute of Marine Sciences, Fisheries Collaborative Program, University of California, Santa Cruz, CA, 95060, USA.
J Math Biol. 2025 Aug 18;91(3):28. doi: 10.1007/s00285-025-02252-7.
Many animals show avoidance behavior in response to disease. For instance, in some species of frogs, individuals that survive infection of the fungal disease chytridiomycosis may learn to avoid areas where the pathogen is present. As chytridiomycosis has caused substantial declines in many amphibian populations worldwide, it is a highly relevant example for studying these behavioral dynamics. Here we develop compartmental ODE models to study the epidemiological consequences of avoidance behavior of animals in response to waterborne infectious diseases. Individuals with avoidance behavior are less likely to become infected, but avoidance may also entail increased risk of mortality. We compare the outbreak dynamics with avoidance behavior that is innate (present from birth) or learned (gained after surviving infection). We also consider how management to induce learned avoidance might affect the resulting dynamics. Using methods from dynamical systems theory, we calculate the basic reproduction number [Formula: see text] for each model, analyze equilibrium stability of the systems, and perform a detailed bifurcation analysis. We show that disease persistence when [Formula: see text] is possible with learned avoidance, but not with innate avoidance. Our results imply that management to induce behavioral avoidance can actually cause such a scenario, but it is also less likely to occur for high-mortality diseases (e.g., chytridiomycosis). Furthermore, the learned avoidance model demonstrates a variety of codimension-1 and -2 bifurcations not found in the innate avoidance model. Simulations with parameters based on chytridiomycosis are used to demonstrate these features and compare the outcomes with innate, learned, and no avoidance behavior.
许多动物会对疾病表现出回避行为。例如,在某些蛙类物种中,感染真菌疾病壶菌病后存活下来的个体可能会学会避开病原体存在的区域。由于壶菌病已导致全球许多两栖动物种群数量大幅下降,它是研究这些行为动态的一个高度相关的例子。在这里,我们开发了 compartmental ODE 模型来研究动物对水传播传染病的回避行为所产生的流行病学后果。具有回避行为的个体感染的可能性较小,但回避行为也可能带来更高的死亡风险。我们比较了具有先天(出生就存在)或后天习得(感染后存活获得)回避行为时的疫情动态。我们还考虑了诱导后天习得回避行为的管理措施可能如何影响最终的动态。使用动力系统理论的方法,我们计算了每个模型的基本再生数[公式:见原文],分析了系统的平衡稳定性,并进行了详细的分岔分析。我们表明,当[公式:见原文]时,后天习得回避行为可能导致疾病持续存在,但先天回避行为则不会。我们的结果表明,诱导行为回避的管理措施实际上可能导致这种情况,但对于高致死性疾病(如壶菌病)来说,这种情况发生的可能性也较小。此外,后天习得回避模型展示了先天回避模型中未发现的各种一维和二维分岔。使用基于壶菌病的参数进行模拟,以展示这些特征,并将结果与先天、后天习得和无回避行为的情况进行比较。