Nopens Martin, Greving Imke, Flenner Silja, Hesse Linnea, Lüdtke Jan, Altgen Michael, Koch Gerald, Beruda Johannes, Heldner Sabrina, Köhm Hannes, Kaschuro Sergej, Olbrich Andrea, Mietner Jakob Benedikt, Scheckenbach Fabian, Sieburg-Rockel Jördis, Krause Andreas
Thünen Institute of Wood Research, Leuschnerstraße 91c, 21031 Hamburg, Germany.
Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
J Synchrotron Radiat. 2025 Sep 1;32(Pt 5):1354-1360. doi: 10.1107/S1600577525006484. Epub 2025 Aug 18.
Deep understanding of the structural composition and growth of biological specimens is becoming increasingly important for the development of bio-based and sustainable material systems. Full-field nano-computed tomography is particularly suitable for this purpose as it allows for non-destructive 3D imaging at high spatial resolution. However, most biological samples are functionalized by water and respond sensitively to any changes in climate conditions, specifically relative humidity, by adjusting their material moisture content. To date, only a limited number of tomography instruments offer an in situ climate control option to users. These, however, are limited either by the range of relative humidity states, the long times required to change the climate state, or obstruction or attenuation of the beam. Here, the first fully automatized climate cell for in situ full-field nanotomography is presented. It has been designed, built and integrated at the nanotomography station at the P05 imaging beamline, operated by Hereon at the DESY storage ring PETRA III, Germany. The highly flexible and windowless design allows the humidity dependent swelling and shrinking of lignified plant cell walls to be studied in situ, using phase contrast nanotomography. The concept of this climate chamber can easily be integrated into other setups. It operates in the relative humidity range of 0-90% and can be controlled in a temperature range of 10-50°C. Climate conditions can be adjusted at any time, remotely from the control hutch by using a humidity generator. Results show that the developed setup maintains a stable climate during the entire duration of a tomographic scan at different humidities and does not obstruct the sample or hinder the imaging conditions. During the tomographic investigation the sample remains stable in the flow of the air stream and shows typical cell wall swelling and shrinking behaviour depending on the equilibrium moisture content. This new climate cell is now available to all users of the P05 nanotomography instrument for conditioning samples, serving a wide range of scientific applications.
深入了解生物样本的结构组成和生长对于生物基和可持续材料系统的发展变得越来越重要。全场纳米计算机断层扫描特别适合于此目的,因为它允许在高空间分辨率下进行无损三维成像。然而,大多数生物样本都被水官能化,并且通过调节其材料含水量对气候条件的任何变化,特别是相对湿度,做出敏感反应。迄今为止,只有有限数量的断层扫描仪器为用户提供原位气候控制选项。然而,这些仪器要么受到相对湿度状态范围的限制,要么受到改变气候状态所需的长时间限制,要么受到光束的阻挡或衰减。在此,展示了首个用于原位全场纳米断层扫描的全自动气候室。它是在德国DESY储存环PETRA III的Hereon操作的P05成像光束线的纳米断层扫描站设计、建造和集成的。高度灵活且无窗口的设计允许使用相衬纳米断层扫描原位研究木质化植物细胞壁的湿度依赖性膨胀和收缩。这种气候室的概念可以很容易地集成到其他装置中。它在0-90%的相对湿度范围内运行,并且可以在10-50°C的温度范围内进行控制。可以通过使用湿度发生器从控制间远程随时调整气候条件。结果表明,所开发的装置在不同湿度下的断层扫描整个过程中保持稳定的气候,并且不会阻挡样品或妨碍成像条件。在断层扫描研究期间,样品在气流中保持稳定,并根据平衡含水量表现出典型的细胞壁膨胀和收缩行为。这个新的气候室现在可供P05纳米断层扫描仪器的所有用户用于样品调节,服务于广泛的科学应用。