Dierickx Sofie, Genbrugge Siska, Beeckman Hans, Hubau Wannes, Kibleur Pierre, Van den Bulcke Jan
Cultural Anthropology and History Department, Royal Museum for Central Africa, Leuvensesteenweg 7, 3080, Tervuren, Belgium.
UGent-Woodlab-Laboratory of Wood technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86/N12, 9000, Ghent, Belgium.
Plant Methods. 2024 Jun 24;20(1):98. doi: 10.1186/s13007-024-01216-0.
Taxonomic identification of wood specimens provides vital information for a wide variety of academic (e.g. paleoecology, cultural heritage studies) and commercial (e.g. wood trade) purposes. It is generally accomplished through the observation of key anatomical features. Classic methodologies mostly require destructive sub-sampling, which is not always acceptable. X-ray computed micro-tomography (µCT) is a promising non-destructive alternative since it allows a detailed non-invasive visualization of the internal wood structure. There is, however, no standardized approach that determines the required resolution for proper wood identification using X-ray µCT. Here we compared X-ray µCT scans of 17 African wood species at four resolutions (1 µm, 3 µm, 8 µm and 15 µm). The species were selected from the Xylarium of the Royal Museum for Central Africa, Belgium, and represent a wide variety of wood-anatomical features.
For each resolution, we determined which standardized anatomical features can be distinguished or measured, using the anatomical descriptions and microscopic photographs on the Inside Wood Online Database as a reference. We show that small-scale features (e.g. pits and fibres) can be best distinguished at high resolution (especially 1 µm voxel size). In contrast, large-scale features (e.g. vessel porosity or arrangement) can be best observed at low resolution due to a larger field of view. Intermediate resolutions are optimal (especially 3 µm voxel size), allowing recognition of most small- and large-scale features. While the potential for wood identification is thus highest at 3 µm, the scans at 1 µm and 8 µm were successful in more than half of the studied cases, and even the 15 µm resolution showed a high potential for 40% of the samples.
The results show the potential of X-ray µCT for non-destructive wood identification. Each of the four studied resolutions proved to contain information on the anatomical features and has the potential to lead to an identification. The dataset of 17 scanned species is made available online and serves as the first step towards a reference database of scanned wood species, facilitating and encouraging more systematic use of X-ray µCT for the identification of wood species.
木材标本的分类鉴定为广泛的学术目的(如古生态学、文化遗产研究)和商业目的(如木材贸易)提供了重要信息。通常通过观察关键解剖特征来完成。经典方法大多需要进行破坏性的子采样,这并非总是可行的。X射线计算机显微断层扫描(µCT)是一种很有前景的非破坏性替代方法,因为它能够对木材内部结构进行详细的非侵入性可视化。然而,目前尚无标准化方法来确定使用X射线µCT进行准确木材鉴定所需的分辨率。在此,我们比较了17种非洲木材物种在四种分辨率(1微米、3微米、8微米和15微米)下的X射线µCT扫描结果。这些物种选自比利时皇家中非博物馆的木材标本馆,代表了各种各样的木材解剖特征。
对于每种分辨率,我们以《木材内部在线数据库》中的解剖描述和显微照片为参考,确定了哪些标准化解剖特征可以被区分或测量。我们发现,小规模特征(如纹孔和纤维)在高分辨率(特别是体素大小为1微米时)能得到最佳区分。相比之下,大规模特征(如导管孔隙率或排列方式)由于视野更大,在低分辨率下能得到最佳观察效果。中等分辨率是最优的(特别是体素大小为3微米时),能够识别大多数小规模和大规模特征。虽然在3微米分辨率下木材鉴定的潜力最大,但在1微米和8微米分辨率下的扫描在超过一半的研究案例中取得了成功,甚至15微米分辨率在40%的样本中也显示出了很高的潜力。
结果表明X射线µCT在木材非破坏性鉴定方面具有潜力。所研究的四种分辨率中的每一种都证明包含有关解剖特征的信息,并且有导致鉴定的潜力。17种扫描物种的数据集已在线提供,作为迈向扫描木材物种参考数据库的第一步,有助于并鼓励更系统地使用X射线µCT来鉴定木材物种。