Suppr超能文献

青少年使用多组件移动健康工具:在一项干预试验中确定使用模式、决定因素和健康行为变化

Adolescent Engagement With a Multicomponent mHealth Tool: Identifying Usage Patterns, Determinants, and Health Behavior Change in an Intervention Trial.

作者信息

Peuters Carmen, DeSmet Ann, Maenhout Laura, Cardon Greet, Debeer Dries, Crombez Geert

机构信息

Department of Experimental-Clinical and Health Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Henri Dunantlaan 2, Ghent, 9000, Belgium, 32 9 264 64 61.

Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.

出版信息

JMIR Mhealth Uhealth. 2025 Aug 18;13:e59041. doi: 10.2196/59041.

Abstract

BACKGROUND

Research about the engagement of adolescents with mobile health (mHealth) interventions is scarce, while it is generally assumed that the engagement affects the intervention efficacy.

OBJECTIVE

Using an mHealth intervention that targets the general population of adolescents to promote healthy behaviors (physical activity, low sedentary time, adequate sleep, and taking breakfast) and mental health, we aimed to investigate (1) how adolescents engage with the intervention, (2) which engagement styles can be identified and how these differ according to personal characteristics, and (3) which style of engagement predicts behavior change. The intervention used, #LIFEGOALS, includes self-regulation techniques, a support chatbot, narrative videos, and gamification, brought together in an app coupled to an activity tracker.

METHODS

Logged usage data and self-reports of experience with #LIFEGOALS were collected from 159 adolescents (mean age 13.54, SD 0.95 years) over a 12-week intervention period and used to describe behavioral and experiential engagement with the intervention components over time. Baseline data on sociodemographic variables, mental health, and behavioral determinants were explored as determinants of engagement and were used to characterize engagement styles that were identified through exploratory cluster analysis on the frequency of usage of the components. Linear mixed-effects regression was used to analyze the effect of engagement style on health behavior change.

RESULTS

Average time in the app was 26 minutes (SD 26) over the 12-week period, with usage decreasing substantially after the first week. The use of self-regulation techniques and gamification was strongly interrelated (0.65 <r <0.70), whereas use of Fitbit showed weaker correlations with other component usage (0.15 <r <0.31). Exploratory analyses suggest that engagement was influenced by immigration background and by adolescents' attitudes, self-efficacy, and intentions toward healthy living. Younger participants tended to use the Fitbit more frequently. Cluster analysis identified 4 engagement styles: narrative usage (n=19), app usage (n=36), Fitbit usage (n=32), and no usage (n=72), which were associated with differences in age, peer support, and mental health. Engagement style did not affect change in health behavior outcomes from preintervention to postintervention.

CONCLUSIONS

Different engagement styles were identified based on the frequency and type of components used. Findings support the relevance of tailoring mHealth to individual, interpersonal, and contextual characteristics. The overall low engagement with the intervention may have limited the detection of differences in health effects between engagement styles.

摘要

背景

关于青少年参与移动健康(mHealth)干预的研究很少,而人们普遍认为这种参与会影响干预效果。

目的

通过一项针对青少年普通人群的mHealth干预措施来促进健康行为(体育活动、低久坐时间、充足睡眠和吃早餐)和心理健康,我们旨在调查:(1)青少年如何参与该干预;(2)可以识别出哪些参与方式,以及这些方式如何根据个人特征而有所不同;(3)哪种参与方式能预测行为改变。所使用的干预措施#LIFEGOALS包括自我调节技术、一个支持聊天机器人、叙事视频和游戏化元素,整合在一个与活动追踪器相连的应用程序中。

方法

在为期12周的干预期内,从159名青少年(平均年龄13.54岁,标准差0.95岁)收集了#LIFEGOALS的使用记录数据和自我报告的体验数据,并用于描述随着时间推移对干预组件的行为和体验参与情况。探索了社会人口统计学变量、心理健康和行为决定因素的基线数据,将其作为参与的决定因素,并用于刻画通过对组件使用频率进行探索性聚类分析所识别出的参与方式。使用线性混合效应回归分析参与方式对健康行为改变的影响。

结果

在12周期间,应用程序的平均使用时间为26分钟(标准差26),第一周后使用量大幅下降。自我调节技术和游戏化元素的使用高度相关(0.65<r<0.70),而Fitbit的使用与其他组件使用的相关性较弱(0.15<r<0.31)。探索性分析表明,参与受到移民背景以及青少年对健康生活的态度、自我效能感和意图的影响。较年轻的参与者倾向于更频繁地使用Fitbit。聚类分析识别出4种参与方式:叙事使用(n=19)、应用程序使用(n=36)、Fitbit使用(n=32)和不使用(n=72),这些方式与年龄、同伴支持和心理健康的差异相关。参与方式并未影响干预前到干预后健康行为结果的变化。

结论

根据所使用组件的频率和类型识别出了不同的参与方式。研究结果支持根据个体、人际和情境特征定制移动健康干预措施的相关性。对干预的总体低参与度可能限制了对不同参与方式之间健康影响差异的检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5f5/12360726/184b5d61d9d0/mhealth-v13-e59041-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验