Li Yue, Liu Qiang, Chen Shuang, Lv Lingfeng, Han Xinpei, Jia Run, Bu Lingchen, Zhang Xiaotong
Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
Peng Cheng Laboratory, Shenzhen, 518000, China.
Sci Data. 2025 Aug 18;12(1):1446. doi: 10.1038/s41597-025-05772-5.
As a world-class urban agglomeration, the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) has experienced substantial land-cover restructuring driven by urbanization, necessitating high temporal resolution monitoring to capture dynamic surface processes. However, traditional land-cover products cannot capture intra-annual dynamics effectively due to their limited update cycles. Therefore, this study generates a publicly accessible dynamic land-cover dataset for the GBA spanning 2000-2022, with a 30-meter spatial resolution and a 15-day temporal resolution. This dataset achieves an overall accuracy of 97.46%, an average accuracy of 94.5%, an F1 score of 95.19%, and a kappa coefficient of 96.78%. The validation results indicated that this dataset significantly enhances the detection of short-term land cover transitions and facilitates the characterization of critical environmental patterns. We anticipate it will serve as a baseline for monitoring agricultural growing cycles, tracking vegetation phenological shifts, and identifying disturbances in forests and croplands caused by natural hazards or anthropogenic activities.
作为世界级城市群,粤港澳大湾区(GBA)经历了由城市化驱动的大规模土地覆盖结构调整,因此需要高时间分辨率监测来捕捉动态地表过程。然而,传统的土地覆盖产品由于更新周期有限,无法有效捕捉年内动态。因此,本研究生成了一个2000 - 2022年期间可公开获取的粤港澳大湾区动态土地覆盖数据集,空间分辨率为30米,时间分辨率为15天。该数据集的总体精度为97.46%,平均精度为94.5%,F1分数为95.19%,kappa系数为96.78%。验证结果表明,该数据集显著提高了对短期土地覆盖变化的检测能力,并有助于刻画关键环境模式。我们预计它将作为监测农业生长周期、跟踪植被物候变化以及识别由自然灾害或人为活动引起的森林和农田干扰的基线。