Suppr超能文献

肠道微生物群与卵巢囊肿:一项孟德尔随机化研究。

The gut microbiome and ovarian cysts: a mendelian randomization study.

作者信息

Qu Jiahui, Zhang Liying

机构信息

The Second Hospital of Harbin Medical University, No. 246 Xue Fu Road, Nangang District, Harbin, China.

Department of Obstetrics and Gynecology, The Second Hospital of Harbin Medical University, Harbin, China.

出版信息

J Ovarian Res. 2025 Aug 18;18(1):188. doi: 10.1186/s13048-025-01767-3.

Abstract

Recent evidence suggests a potential association between gut microbiome and ovarian diseases; however, the causal relationship with ovarian cysts remains unclear. In this study, we conducted a two-sample Mendelian randomization (MR) analysis to investigate potential causal effects between gut microbial genera and ovarian cysts. We used summary statistics from large-scale genome-wide association studies (GWAS) of the gut microbiome and ovarian cysts. After stringent selection of instrumental variables, MR analyses were performed using Inverse variance weighted (IVW) as the primary method, supplemented by Simple mode, MR-Egger, weighted median, and weighted mode approaches. Sensitivity analyses, including Cochran's Q test, MR-Egger regression, MR-PRESSO, and "leave-one-out" analysis, were conducted to evaluate the reliability of the results. We identified 17 gut microbial genera with suggestive causal associations with ovarian cysts. Among these, nine genera appeared to be potential risk factors, whereas eight may play a protective role. These findings provide novel insights into microbe-mediated mechanisms and may inform future clinical research on ovarian cysts.

摘要

近期证据表明肠道微生物群与卵巢疾病之间可能存在关联;然而,与卵巢囊肿的因果关系仍不明确。在本研究中,我们进行了两样本孟德尔随机化(MR)分析,以研究肠道微生物属与卵巢囊肿之间的潜在因果效应。我们使用了来自肠道微生物群和卵巢囊肿大规模全基因组关联研究(GWAS)的汇总统计数据。在严格选择工具变量后,以逆方差加权(IVW)作为主要方法进行MR分析,并辅以简单模式、MR-Egger、加权中位数和加权模式方法。进行了敏感性分析,包括 Cochr an's Q检验、MR-Egger回归、MR-PRESSO和“留一法”分析,以评估结果的可靠性。我们确定了17个与卵巢囊肿存在潜在因果关联的肠道微生物属。其中,9个属似乎是潜在风险因素,而8个可能起保护作用。这些发现为微生物介导的机制提供了新的见解,并可能为未来卵巢囊肿的临床研究提供参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验