Suppr超能文献

陶瓷中的中红外光共振增强质子传导率。

Mid-infrared light resonance-enhanced proton conductivity in ceramics.

作者信息

Li Haobo, Zhu Yicheng, Zhao Zihan, Ma Ruixin, Lu Jiachen, Wan Wenjie, Chen Qianli

机构信息

Global College, Shanghai Jiao Tong University, Shanghai, 200240, China.

School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

Nat Commun. 2025 Aug 19;16(1):7707. doi: 10.1038/s41467-025-63027-8.

Abstract

Ionic transport in solids is a critical process for energy devices including batteries and fuel cells. To improve ionic transport, an emerging approach is the selective excitation of atomic vibrations related to the mobile ions. However, there is limited direct experimental evidence demonstrating enhanced macroscopic ionic conductivity through this approach. Here, we use a 140 mW continuous-wave mid-infrared (MIR) light to excite the O-H stretch vibration in proton-conducting yttrium-doped barium zirconate. We observe reversible enhancement of 36.8% in bulk, and 53.0% in grain boundary proton conductivities, controlled by MIR irradiation. Decreases in the activation energy and prefactor for bulk proton conduction suggest possible reduction in activation entropy and attempt frequency of proton hopping. We rationalize the enhancement as the excitation of O-H stretch vibrational states, followed by the relaxation into lattice vibration modes, modulating the potential energy surface of the proton. Our findings highlight MIR irradiation as a power-saving strategy to optimize the performance and operation cost of solid-state electrochemical devices by selective modulation of the vibrational properties.

摘要

固体中的离子传输是包括电池和燃料电池在内的能量装置的关键过程。为了改善离子传输,一种新兴方法是选择性激发与移动离子相关的原子振动。然而,通过这种方法提高宏观离子电导率的直接实验证据有限。在此,我们使用140毫瓦的连续波中红外(MIR)光来激发质子传导性钇掺杂锆酸钡中的O-H伸缩振动。我们观察到,通过MIR辐照控制,体相质子电导率可逆增强36.8%,晶界质子电导率可逆增强53.0%。体相质子传导的活化能和指前因子降低,表明质子跳跃的活化熵和尝试频率可能降低。我们将这种增强解释为O-H伸缩振动状态的激发,随后弛豫到晶格振动模式,从而调制质子的势能面。我们的研究结果突出了MIR辐照作为一种节能策略,通过选择性调制振动特性来优化固态电化学装置的性能和运行成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验