Suppr超能文献

基于多模态整合对比学习模型的肺腺癌亚型分类

Lung adenocarcinoma subtype classification based on contrastive learning model with multimodal integration.

作者信息

Wang Changmiao, Liu Lijian, Fan Chenchen, Zhang Yongquan, Mai Zhijun, Li Li, Liu Zhou, Tian Yuan, Hu Jiahang, Elazab Ahmed

机构信息

Shenzhen Research Institute of Big Data, Shenzhen, China.

National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Cancer, Cancer Hospital and Shenzhen Hospital, Shenzhen, China.

出版信息

Sci Rep. 2025 Aug 19;15(1):30404. doi: 10.1038/s41598-025-13818-2.

Abstract

Accurately identifying the stages of lung adenocarcinoma is essential for selecting the most appropriate treatment plans. Nonetheless, this task is complicated due to challenges such as integrating diverse data, similarities among subtypes, and the need to capture contextual features, making precise differentiation difficult. We address these challenges and propose a multimodal deep neural network that integrates computed tomography (CT) images, annotated lesion bounding boxes, and electronic health records. Our model first combines bounding boxes with precise lesion location data and CT scans, generating a richer semantic representation through feature extraction from regions of interest to enhance localization accuracy using a vision transformer module. Beyond imaging data, the model also incorporates clinical information encoded using a fully connected encoder. Features extracted from both CT and clinical data are optimized for cosine similarity using a contrastive language-image pre-training module, ensuring they are cohesively integrated. In addition, we introduce an attention-based feature fusion module that harmonizes these features into a unified representation to fuse features from different modalities further. This integrated feature set is then fed into a classifier that effectively distinguishes among the three types of adenocarcinomas. Finally, we employ focal loss to mitigate the effects of unbalanced classes and contrastive learning loss to enhance feature representation and improve the model's performance. Our experiments on public and proprietary datasets demonstrate the efficiency of our model, achieving a superior validation accuracy of 81.42% and an area under the curve of 0.9120. These results significantly outperform recent multimodal classification approaches. The code is available at https://github.com/fancccc/LungCancerDC .

摘要

准确识别肺腺癌的阶段对于选择最合适的治疗方案至关重要。然而,由于整合多样数据、亚型之间的相似性以及捕捉上下文特征等挑战,这项任务变得复杂,使得精确区分变得困难。我们应对这些挑战,提出了一种多模态深度神经网络,该网络整合了计算机断层扫描(CT)图像、标注的病变边界框和电子健康记录。我们的模型首先将边界框与精确的病变位置数据和CT扫描相结合,通过从感兴趣区域提取特征来生成更丰富的语义表示,以使用视觉Transformer模块提高定位准确性。除了成像数据,该模型还纳入了使用全连接编码器编码的临床信息。使用对比语言-图像预训练模块对从CT和临床数据中提取的特征进行余弦相似度优化,确保它们紧密整合。此外,我们引入了一个基于注意力的特征融合模块,将这些特征协调成统一表示,以进一步融合来自不同模态的特征。然后将这个整合的特征集输入到一个分类器中,该分类器有效地区分三种类型的腺癌。最后,我们使用焦点损失来减轻类别不平衡的影响,并使用对比学习损失来增强特征表示,提高模型性能。我们在公共和专有数据集上的实验证明了我们模型的有效性,实现了81.42%的卓越验证准确率和0.9120的曲线下面积。这些结果显著优于最近的多模态分类方法。代码可在https://github.com/fancccc/LungCancerDC获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a62/12365151/98580bbe83bb/41598_2025_13818_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验