Zhou Jing, Hu Bin, Feng Wei, Zhang Zhang, Fu Xiaotong, Shao Handie, Wang Hansheng, Jin Longyu, Ai Siyuan, Ji Ying
Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, China.
Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
NPJ Digit Med. 2023 Jul 5;6(1):119. doi: 10.1038/s41746-023-00866-z.
Lung cancer screening using computed tomography (CT) has increased the detection rate of small pulmonary nodules and early-stage lung adenocarcinoma. It would be clinically meaningful to accurate assessment of the nodule histology by CT scans with advanced deep learning algorithms. However, recent studies mainly focus on predicting benign and malignant nodules, lacking of model for the risk stratification of invasive adenocarcinoma. We propose an ensemble multi-view 3D convolutional neural network (EMV-3D-CNN) model to study the risk stratification of lung adenocarcinoma. We include 1075 lung nodules (≤30 mm and ≥4 mm) with preoperative thin-section CT scans and definite pathology confirmed by surgery. Our model achieves a state-of-art performance of 91.3% and 92.9% AUC for diagnosis of benign/malignant and pre-invasive/invasive nodules, respectively. Importantly, our model outperforms senior doctors in risk stratification of invasive adenocarcinoma with 77.6% accuracy [i.e., Grades 1, 2, 3]). It provides detailed predictive histological information for the surgical management of pulmonary nodules. Finally, for user-friendly access, the proposed model is implemented as a web-based system ( https://seeyourlung.com.cn ).
使用计算机断层扫描(CT)进行肺癌筛查提高了小肺结节和早期肺腺癌的检出率。利用先进的深度学习算法通过CT扫描准确评估结节组织学具有临床意义。然而,最近的研究主要集中在预测良性和恶性结节,缺乏用于浸润性腺癌风险分层的模型。我们提出了一种集成多视图三维卷积神经网络(EMV-3D-CNN)模型来研究肺腺癌的风险分层。我们纳入了1075个肺结节(直径≤30毫米且≥4毫米),这些结节均有术前薄层CT扫描且经手术确诊病理。我们的模型在诊断良性/恶性结节和浸润前/浸润性结节方面分别达到了91.3%和92.9%的AUC的先进性能。重要的是,我们的模型在浸润性腺癌风险分层方面表现优于资深医生,准确率为77.6%[即1、2、3级]。它为肺结节的手术管理提供了详细的预测组织学信息。最后,为了便于用户使用,所提出的模型被实现为一个基于网络的系统(https://seeyourlung.com.cn)。