Biomedical Computer Vision Group, BioQuant Center and Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, 69120, Germany.
Sci Rep. 2021 Jun 29;11(1):13505. doi: 10.1038/s41598-021-92799-4.
The age of precision medicine demands powerful computational techniques to handle high-dimensional patient data. We present MultiSurv, a multimodal deep learning method for long-term pan-cancer survival prediction. MultiSurv uses dedicated submodels to establish feature representations of clinical, imaging, and different high-dimensional omics data modalities. A data fusion layer aggregates the multimodal representations, and a prediction submodel generates conditional survival probabilities for follow-up time intervals spanning several decades. MultiSurv is the first non-linear and non-proportional survival prediction method that leverages multimodal data. In addition, MultiSurv can handle missing data, including single values and complete data modalities. MultiSurv was applied to data from 33 different cancer types and yields accurate pan-cancer patient survival curves. A quantitative comparison with previous methods showed that Multisurv achieves the best results according to different time-dependent metrics. We also generated visualizations of the learned multimodal representation of MultiSurv, which revealed insights on cancer characteristics and heterogeneity.
精准医学时代需要强大的计算技术来处理高维的患者数据。我们提出了 MultiSurv,这是一种用于长期泛癌生存预测的多模态深度学习方法。MultiSurv 使用专用的子模型来建立临床、影像和不同高维组学数据模态的特征表示。数据融合层聚合多模态表示,预测子模型生成跨越数十年的随访时间间隔的条件生存概率。MultiSurv 是第一个利用多模态数据的非线性和非比例生存预测方法。此外,MultiSurv 可以处理缺失数据,包括单个值和完整的数据模态。MultiSurv 应用于来自 33 种不同癌症类型的数据,并生成准确的泛癌患者生存曲线。与之前方法的定量比较表明,根据不同的时变指标,Multisurv 实现了最佳结果。我们还生成了 MultiSurv 学习的多模态表示的可视化,揭示了癌症特征和异质性的见解。