Suppr超能文献

基于机器学习构建免疫原性细胞死亡相关评分以改善胶质瘤的预后和个性化治疗

Machine learning-based construction of Immunogenic cell death-related score for improving prognosis and personalized treatment in glioma.

作者信息

Li Guoyin, Zhao Yukui, He Yubo, Qian Zhaoqiang, Liu Yiwen, Li Xiaoyan, Li Lili, Liu Zhiqiang

机构信息

Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, No. 199 Chang'an South Road, Xi'an, 710062, Shaanxi, China.

College of Life Science and Agronomy, Zhoukou Normal University, No. 6, Wenchang Road, Chuanhui District, Zhoukou, 466001, Henan, China.

出版信息

Sci Rep. 2025 Aug 19;15(1):30417. doi: 10.1038/s41598-025-15658-6.

Abstract

Immunogenic cell death (ICD) is capable of activating both innate and adaptive immune responses. In this study, we aimed to develop an ICD-related signature in glioma patients and facilitate the assessment of their prognosis and drug sensitivity. Consensus clustering and non-negative matrix factorization (NMF) were performed to classify patients into subgroups. A least absolute shrinkage and selection operator (LASSO) logistic regression model was constructed to establish an ICD-related risk score (ICDS). CIBERSORT and ESTIMATE algorithms were employed to evaluate the infiltration of immune cells. Flow cytometry, CCK-8, EdU, and Transwell assays were used to detect cell proliferation and migration abilities. qPCR, Western blotting, immunohistochemistry and immunofluorescence were utilized to detect mRNA and protein expression levels. The ICDS proved effective in predicting the prognosis of glioma patients in both the training and two validating cohorts. The ICDS exhibited significant advantages when compared to the 71 previously published signatures. Patients with a high ICDS score demonstrated marked enhancement in immune cell infiltration and expression of immune checkpoint inhibitor-related genes. Furthermore, SERPINH1, one of the 14 key genes used to establish the ICDS, was abnormally overexpressed in gliomas and activate JAK/STAT signaling, thereby promoting glioma cell proliferation and migration. We developed an ICDS marker to evaluate the prognosis and drug response of glioma patients, and confirmed that SERPINH1 promotes the malignant phenotype of gliomas by modulating the JAK/STAT signaling pathway.

摘要

免疫原性细胞死亡(ICD)能够激活先天性和适应性免疫反应。在本研究中,我们旨在开发一种与胶质瘤患者ICD相关的特征,并促进对其预后和药物敏感性的评估。进行了一致性聚类和非负矩阵分解(NMF)以将患者分为亚组。构建了最小绝对收缩和选择算子(LASSO)逻辑回归模型以建立与ICD相关的风险评分(ICDS)。采用CIBERSORT和ESTIMATE算法评估免疫细胞的浸润情况。使用流式细胞术、CCK-8、EdU和Transwell实验检测细胞增殖和迁移能力。利用qPCR、蛋白质免疫印迹、免疫组织化学和免疫荧光检测mRNA和蛋白质表达水平。ICDS在训练队列和两个验证队列中均被证明可有效预测胶质瘤患者的预后。与之前发表的71种特征相比,ICDS表现出显著优势。ICDS评分高的患者免疫细胞浸润和免疫检查点抑制剂相关基因的表达显著增强。此外,用于建立ICDS的14个关键基因之一的SERPINH1在胶质瘤中异常过表达并激活JAK/STAT信号通路,从而促进胶质瘤细胞的增殖和迁移。我们开发了一种ICDS标志物来评估胶质瘤患者的预后和药物反应,并证实SERPINH1通过调节JAK/STAT信号通路促进胶质瘤恶性表型的形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/429b/12365229/e92c8bc97253/41598_2025_15658_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验