Wei Nan, Mathy René Michael, Chang De-Hua, Mayer Philipp, Liermann Jakob, Springfeld Christoph, Dill Michael T, Longerich Thomas, Lurje Georg, Kauczor Hans-Ulrich, Wielpütz Mark O, Öcal Osman
Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
Liver Cancer Center Heidelberg, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.
Cancer Imaging. 2025 Aug 19;25(1):104. doi: 10.1186/s40644-025-00926-5.
BACKGROUND: Accurate prediction of tumor response after drug-eluting beads transarterial chemoembolization (DEB-TACE) remains challenging in hepatocellular carcinoma (HCC), given tumor heterogeneity and dynamic changes over time. Existing prediction models based on single timepoint imaging do not capture dynamic treatment-induced changes. This study aims to develop and validate a predictive model that integrates deep learning and machine learning algorithms on longitudinal contrast-enhanced MRI (CE-MRI) to predict treatment response in HCC patients undergoing DEB-TACE. METHODS: This retrospective study included 202 HCC patients treated with DEB-TACE from 2004 to 2023, divided into a training cohort ( = 141) and validation cohort ( = 61). Radiomics and deep learning features were extracted from standardized longitudinal CE-MRI to capture dynamic tumor changes. Feature selection involved correlation analysis, minimum redundancy maximum relevance, and least absolute shrinkage and selection operator regression. The patients were categorized into two groups: the objective response group ( = 123, 60.9%; complete response = 35, 28.5%; partial response = 88, 71.5%) and the non-response group ( = 79, 39.1%; stable disease = 62, 78.5%; progressive disease = 17, 21.5%). Predictive models were constructed using radiomics, deep learning, and integrated features. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the models. RESULTS: We retrospectively evaluated 202 patients (62.67 ± 9.25 years old) with HCC treated after DEB-TACE. A total of 7,182 radiomics features and 4,096 deep learning features were extracted from the longitudinal CE-MRI images. The integrated model was developed using 13 quantitative radiomics features and 4 deep learning features and demonstrated acceptable and robust performance with an receiver operating characteristic curve (AUC) of 0.941 (95%CI: 0.893–0.989) in the training cohort, and AUC of 0.925 (95%CI: 0.850–0.998) with accuracy of 86.9%, sensitivity of 83.7%, as well as specificity of 94.4% in the validation set. CONCLUSIONS: This study presents a predictive model based on longitudinal CE-MRI data to estimate tumor response to DEB-TACE in HCC patients. By capturing tumor dynamics and integrating radiomics features with deep learning features, the model has the potential to guide individualized treatment strategies and inform clinical decision-making regarding patient management. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40644-025-00926-5.
背景:鉴于肿瘤异质性和随时间的动态变化,准确预测药物洗脱微球经动脉化疗栓塞术(DEB-TACE)后肝癌(HCC)的肿瘤反应仍然具有挑战性。现有的基于单时间点成像的预测模型无法捕捉治疗引起的动态变化。本研究旨在开发并验证一种预测模型,该模型整合深度学习和机器学习算法,基于纵向对比增强磁共振成像(CE-MRI)来预测接受DEB-TACE治疗的HCC患者的治疗反应。 方法:这项回顾性研究纳入了2004年至2023年接受DEB-TACE治疗的202例HCC患者,分为训练队列(n = 141)和验证队列(n = 61)。从标准化的纵向CE-MRI中提取影像组学和深度学习特征,以捕捉肿瘤的动态变化。特征选择包括相关分析、最小冗余最大相关分析以及最小绝对收缩和选择算子回归。患者被分为两组:客观反应组(n = 123,60.9%;完全缓解 = 35,28.5%;部分缓解 = 88,71.5%)和无反应组(n = 79,39.1%;疾病稳定 = 62,78.5%;疾病进展 = 17,21.5%)。使用影像组学、深度学习和综合特征构建预测模型。采用受试者操作特征曲线(ROC)下面积(AUC)评估模型性能。 结果:我们回顾性评估了202例接受DEB-TACE治疗后的HCC患者(62.67±9.25岁)。从纵向CE-MRI图像中总共提取了7182个影像组学特征和4096个深度学习特征。综合模型使用13个定量影像组学特征和4个深度学习特征构建而成,在训练队列中的受试者操作特征曲线(AUC)为0.941(95%CI:0.893 - 0.989),在验证集中AUC为0.925(95%CI:0.850 - 0.998),准确率为86.9%,敏感性为83.7%,特异性为94.4%,表现出可接受且稳健的性能。 结论:本研究提出了一种基于纵向CE-MRI数据的预测模型,用于估计HCC患者对DEB-TACE的肿瘤反应。通过捕捉肿瘤动态并将影像组学特征与深度学习特征相结合,该模型有潜力指导个体化治疗策略,并为患者管理的临床决策提供参考。 补充信息:在线版本包含可在10.1186/s40644 - 025 - 00926 - 5获取的补充材料。
Comput Biol Med. 2025-9
Cancer Gene Ther. 2024-8
Annu Int Conf IEEE Eng Med Biol Soc. 2023-7