Suppr超能文献

基于 CT 影像组学的生物标志物可预测肝癌对免疫治疗的反应。

CT radiomics-based biomarkers can predict response to immunotherapy in hepatocellular carcinoma.

机构信息

The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, China.

Department of Li Ka Shing Faculty of Medicine, The University of Hong Kong, HKSAR, China.

出版信息

Sci Rep. 2024 Aug 28;14(1):20027. doi: 10.1038/s41598-024-70208-w.

Abstract

Hepatocellular Carcinoma (HCC) remains a leading cause of cancer deaths. Despite the rise of immunotherapies, many HCC patients don't benefit. There's a clear need for biomarkers to guide treatment decisions. This research aims to identify such biomarkers by combining radiological data and machine learning. We analyzed clinical and CT imaging data of 54 HCC patients undergoing immunotherapy. Radiologic features were examined to develop a model predicting short-term immunotherapy effects. We utilized 9 machine learning and 2 ensemble learning techniques using RapidMiner for model construction. We conducted the validation of the above feature combination using 29 HCC patients who received immunotherapy from another hospital, and tested and validated it using XGBoost combined with a genetic algorithm. In 54 HCC patients, radiomics features varied significantly between those with partial response (PR) and stable disease (SD). Key features in Gray Level Run Length Matrix (GLRLM) and in adjacent tissues' Intensity Direct, Neighborhood Gray Tone Difference Matrix (NGTDM), and Shape correlated with short-term immunotherapy efficacy. Selected feature combinations of 15, 19, and 8/15 features yielded better outcomes. Deep learning, random forest, and naive bayes outperformed other methods, with Bagging being more reliable than Adaboost. In the validation set of 29 HCC patients, the mentioned feature combination also demonstrated favorable performance. Furthermore, we achieved improved results when employing XGBoost in conjunction with a genetic algorithm for testing and validation. The machine learning model built with CT image features derived from GLCM, GLRLM, IntensityDirect, NGTDM, and Shape can accurately forecast the short-term efficacy of immunotherapy for HCC.

摘要

肝细胞癌 (HCC) 仍然是癌症死亡的主要原因。尽管免疫疗法有所增加,但许多 HCC 患者并未从中受益。显然需要生物标志物来指导治疗决策。本研究旨在通过结合放射学数据和机器学习来确定此类生物标志物。我们分析了 54 名接受免疫治疗的 HCC 患者的临床和 CT 成像数据。检查了放射学特征,以开发预测短期免疫治疗效果的模型。我们使用 RapidMiner 对 9 种机器学习和 2 种集成学习技术进行了模型构建。我们使用来自另一家医院接受免疫治疗的 29 名 HCC 患者对上述特征组合进行了验证,并使用结合遗传算法的 XGBoost 对其进行了测试和验证。在 54 名 HCC 患者中,部分缓解 (PR) 和疾病稳定 (SD) 之间的放射组学特征差异显著。灰度游程长度矩阵 (GLRLM) 和相邻组织的强度直接、邻域灰度差矩阵 (NGTDM) 中的关键特征以及形状与短期免疫治疗效果相关。15、19 和 8/15 个特征的选定特征组合产生了更好的结果。深度学习、随机森林和朴素贝叶斯的表现优于其他方法,而 Bagging 比 Adaboost 更可靠。在 29 名 HCC 患者的验证集中,该特征组合也表现出良好的性能。此外,当我们使用 XGBoost 结合遗传算法进行测试和验证时,我们获得了更好的结果。基于 GLCM、GLRLM、IntensityDirect、NGTDM 和形状的 CT 图像特征构建的机器学习模型可以准确预测 HCC 免疫治疗的短期疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3a8/11358293/5ace456000d7/41598_2024_70208_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验