Suppr超能文献

一种基于组织分割和解剖学几何形状的全自动膝关节子区域分割网络。

A fully automatic knee subregion segmentation network based on tissue segmentation and anatomical geometry.

作者信息

Chen Shaolong, Zhong Lijie, Zhang Zhiyong, Zhang Xiaodong

机构信息

School of Sino-German Intelligent Manufacturing, Shenzhen City Polytechnic, Shenzhen, 518000, China.

School of Electronics and Communication Engineering, Sun Yat-sen University, Guangzhou, 510000, China.

出版信息

Sci Rep. 2025 Aug 19;15(1):30449. doi: 10.1038/s41598-025-16241-9.

Abstract

Aiming at the difficulty of knee MRI bone and cartilage subregion segmentation caused by numerous subregions and unclear subregion boundary, a fully automatic knee subregion segmentation network based on tissue segmentation and anatomical geometry is proposed. Specifically, first, we use a transformer-based multilevel region and edge aggregation network to achieve precise segmentation of bone and cartilage tissue edges in knee MRI. Then, we designed a fibula detection module, which determines the medial and lateral of the knee by detecting the position of the fibula. Afterwards, a subregion segmentation module based on boundary information was designed, which divides bone and cartilage tissues into subregions by detecting the boundaries. In addition, in order to provide data support for the proposed model, fibula classification dataset and knee MRI bone and cartilage subregion dataset were established respectively. Testing on the fibula classification dataset we established, the proposed method achieved a detection accuracy of 1.000 in detecting the medial and lateral of the knee. On the knee MRI bone and cartilage subregion dataset we established, the proposed method attained an average dice score of 0.953 for bone subregions and 0.831 for cartilage subregions, which verifies the correctness of the proposed method.

摘要

针对膝关节MRI中骨与软骨子区域众多、子区域边界不清晰导致的子区域分割困难问题,提出了一种基于组织分割和解剖几何的膝关节子区域全自动分割网络。具体而言,首先,我们使用基于Transformer的多级区域和边缘聚合网络实现膝关节MRI中骨与软骨组织边缘的精确分割。然后,设计了一个腓骨检测模块,通过检测腓骨的位置来确定膝关节的内侧和外侧。之后,设计了一个基于边界信息的子区域分割模块,通过检测边界将骨和软骨组织划分为子区域。此外,为了为所提出的模型提供数据支持,分别建立了腓骨分类数据集和膝关节MRI骨与软骨子区域数据集。在所建立的腓骨分类数据集上进行测试,所提方法在检测膝关节内侧和外侧时的检测准确率达到1.000。在所建立的膝关节MRI骨与软骨子区域数据集上,所提方法对于骨子区域的平均Dice分数为0.953,对于软骨子区域为0.831,验证了所提方法的正确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验