Suppr超能文献

接受静脉-动脉体外膜肺氧合支持的经皮冠状动脉介入治疗的心脏骤停急性心肌梗死患者院内死亡预测列线图的开发与验证

Development and validation of a nomogram for in-hospital mortality prediction in acute myocardialinfarction patients with cardiac arrest undergoing percutaneous coronary intervention supported by veno-arterial extracorporeal membrane oxygenation.

作者信息

Li Haina, Duan Mingxuan, Duan Guoyu, Zhou Yan, Zhao Xiaoyan

机构信息

Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.

Department of Emergency Medicine, Zhengzhou Central Hospital, Zhengzhou, 450007, China.

出版信息

Eur J Med Res. 2025 Aug 19;30(1):767. doi: 10.1186/s40001-025-03004-5.

Abstract

BACKGROUND

The combination of percutaneous coronary intervention (PCI) and veno-arterial extracorporeal membrane oxygenation (VA-ECMO) has become a widely used approach for resuscitating patients with acute myocardial infarction (AMI) complicated by cardiac arrest (CA). Nonetheless, limited research has focused on predicting in-hospital mortality in affected patients. This study aims to identify factors associated with in-hospital mortality and develop a clinical prediction model for these patients.

METHODS

Clinical presentations of AMI patients with CA undergoing PCI supported by VA-ECMO at two hospitals in Zhengzhou were evaluated. Patients were stratified based on their survival status at discharge. A comprehensive analysis, which included univariate logistic regression, LASSO regression, and multivariate logistic regression, was conducted to identify predictors and develop a nomogram for in-hospital mortality. The nomogram's predictive performance was subsequently compared to that of existing models.

RESULTS

The study included 139 patients, of whom 84 died during hospitalization. Using factors such as age, current smoking, left main culprit vessel, lactic acid levels, and serum creatinine, a nomogram model was developed. The model demonstrated good predictive performance, with an area under the curve of 0.826 (95% CI 0.757-0.894) in the training dataset and 0.783 (95% CI 0.706-0.859) in the internal validation dataset, indicating high accuracy and stability. Clinical decision curve analysis confirmed the model's utility, particularly for risk thresholds above 20%, outperforming existing models.

CONCLUSIONS

This study identified independent predictors of in-hospital mortality in AMI patients with CA undergoing PCI supported by VA-ECMO and developed a clinically applicable prediction model.

摘要

背景

经皮冠状动脉介入治疗(PCI)与静脉-动脉体外膜肺氧合(VA-ECMO)相结合已成为抢救急性心肌梗死(AMI)合并心脏骤停(CA)患者的一种广泛应用的方法。尽管如此,针对预测此类患者院内死亡率的研究仍较为有限。本研究旨在确定与院内死亡率相关的因素,并为这些患者建立临床预测模型。

方法

对郑州两家医院接受VA-ECMO支持的PCI治疗的AMI合并CA患者的临床表现进行评估。根据患者出院时的生存状况进行分层。进行了包括单因素逻辑回归、LASSO回归和多因素逻辑回归在内的综合分析,以确定预测因素并建立院内死亡率的列线图。随后将列线图的预测性能与现有模型进行比较。

结果

该研究纳入了139例患者,其中84例在住院期间死亡。利用年龄、当前吸烟情况、左主干罪犯血管、乳酸水平和血清肌酐等因素,建立了列线图模型。该模型显示出良好的预测性能,训练数据集的曲线下面积为0.826(95%CI 0.757-0.894),内部验证数据集的曲线下面积为0.783(95%CI 0.706-0.859),表明具有较高的准确性和稳定性。临床决策曲线分析证实了该模型的实用性,特别是对于风险阈值高于20%的情况,优于现有模型。

结论

本研究确定了接受VA-ECMO支持的PCI治疗的AMI合并CA患者院内死亡率的独立预测因素,并建立了临床适用的预测模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验