Kim Kyu Tae, Kim Jae-Seung, Baeck Ki Heon, Kim Jong Seok, Park Juhyoun, Bong Seongil, Park Young Joon, Song Yong Bae, Park Changhyun, Jung Soon-Jae, Lee Hyun-Wook, Lee Kyulin, Song Jay Hyok, Lee Soonrewl, Seo Dong-Hwa, Jung Yoon Seok
Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
Adv Mater. 2025 Sep;37(35):e2416816. doi: 10.1002/adma.202416816. Epub 2025 Jun 23.
Despite their high Li conductivity and deformability, sulfide solid electrolytes suffer from limited electrochemical stability, which prevents all-solid-state batteries (ASSBs) from reaching their full performance potential. Herein, a facile surface fluorination strategy is presented for LiPSCl using XeF as a solid-state fluorinating agent, enabling a scalable dry process at moderate temperatures. An ≈37.3 nm-thick uniform fluorinated layer is coated on an LiPSCl surface, preserving 82.8% of the initial Li conductivity (from 2.9 × 10⁻ only to 2.4 × 10⁻ S cm⁻¹ at 30 °C). The underlying fluorination mechanism, deduced through systematic investigations using X-ray photoelectron spectroscopy, X-ray Rietveld refinement, nuclear magnetic resonance, and density functional theory calculations, involves the formation of surface oxidative byproducts and F substitution within the lattice. When applied to LiNiCoMnO electrodes in LiNiCoMnO||(Li-In) half cells at 30 °C, the fluorinated LiPSCl substantially improves the electrochemical performance, delivering superior discharge capacities (e.g., 186.9 vs 173.6 mA h g at 0.33C), capacity retention, and safety characteristics compared to unmodified LiPSCl. This enhancement is attributed to the formation of a robust fluorinated cathode electrolyte interphase that mitigates LiPSCl oxidation. Finally, the stable operation of a pouch-type LiNiCoMnO||Li ASSB is demonstrated, highlighting the scalability of the proposed approach.
尽管硫化物固体电解质具有高锂离子传导率和可变形性,但它们的电化学稳定性有限,这阻碍了全固态电池(ASSB)发挥其全部性能潜力。在此,提出了一种简便的表面氟化策略,使用XeF作为固态氟化剂对LiPSCl进行氟化,从而能够在中等温度下进行可扩展的干法工艺。在LiPSCl表面涂覆了一层约37.3nm厚的均匀氟化层,在30°C下保留了初始锂离子传导率的82.8%(从2.9×10⁻仅降至2.4×10⁻ S cm⁻¹)。通过使用X射线光电子能谱、X射线里特维尔德精修、核磁共振和密度泛函理论计算进行系统研究推断出的潜在氟化机制,涉及表面氧化副产物的形成和晶格内的氟取代。当在30°C下应用于LiNiCoMnO||(Li-In)半电池中的LiNiCoMnO电极时,氟化的LiPSCl显著提高了电化学性能,与未改性的LiPSCl相比,具有更高的放电容量(例如,在0.33C下为186.9 vs 173.6 mA h g)、容量保持率和安全特性。这种增强归因于形成了坚固的氟化正极电解质界面,减轻了LiPSCl的氧化。最后,展示了软包型LiNiCoMnO||Li ASSB的稳定运行,突出了所提出方法的可扩展性。