Suppr超能文献

单纳米移液器上单分子溶菌酶结晶过程中预成核活性的电阻脉冲传感

Resistive Pulse Sensing of Pre-Nucleation Activities during Single-Entity Lysozyme Crystallization on Single Nanopipettes.

作者信息

Balogun Yusuff, Yang Ruoyu, Wang Gangli

机构信息

Department of Chemistry, Georgia State University, Atlanta, Georgia, USA, 30302.

出版信息

Sens Actuators Rep. 2025 Jun;9. doi: 10.1016/j.snr.2025.100281. Epub 2025 Jan 6.

Abstract

The formation of cluster aggregates in a (super)saturated solution prior to protein nucleation is crucial to overcoming the thermodynamic energy barrier which enables further growth of single crystals. This process is important for single crystal growth, separation and energy conversion among other important applications. For structural determination of biomacromolecules, neutron crystallography holds unique advantages in resolving hydrogen/proton over other structure determination techniques but faces technical obstacles in requiring large high-quality single crystals and preferentially hydrogen-deuterium exchanges. Herein, we explore protein nucleation in heavy water (DO) via nanopore-based resistive pulse sensing, with lysozyme as prototype. By controlling localized supersaturation and phase transition at a nanopore through adjusting the potential waveform, a single protein crystal can be grown. Our focus is on understanding the translocation and/or transformation of protein aggregates through nanopores prior to the irreversible nucleation. As expected, higher protein concentrations tend to facilitate nucleation and growth of a single protein crystal with higher supersaturation, consistent with bulk experiments. At lower protein concentrations, individual current spikes are resolved as characteristic single-entity events in resistive pulse sensing. Those transient events are potential-dependent characterized by the peak amplitude, duration and area/charges. Statistical analysis reveals both translocation of protein oligomers and their transformation or further aggregation. This study represents the first step toward elucidating valuable insights into the dynamics of protein translocation and aggregation in heavy water and demonstrates the potential of using nanopores in the detection and characterization of dynamic phase transitions at single-event levels.

摘要

在蛋白质成核之前,(过)饱和溶液中簇聚集体的形成对于克服热力学能垒至关重要,该能垒使得单晶能够进一步生长。这一过程对于单晶生长、分离和能量转换等其他重要应用具有重要意义。对于生物大分子的结构测定,中子晶体学在解析氢/质子方面比其他结构测定技术具有独特优势,但在需要高质量大单晶以及优先进行氢-氘交换方面面临技术障碍。在此,我们以溶菌酶为原型,通过基于纳米孔的电阻脉冲传感来探索重水(D₂O)中的蛋白质成核。通过调节电位波形来控制纳米孔处的局部过饱和度和相变,可以生长出单个蛋白质晶体。我们的重点是了解在不可逆成核之前蛋白质聚集体通过纳米孔的转运和/或转变。正如预期的那样,较高的蛋白质浓度往往有助于在更高的过饱和度下形成单个蛋白质晶体并使其生长,这与本体实验一致。在较低的蛋白质浓度下,单个电流尖峰在电阻脉冲传感中被解析为特征性的单实体事件。这些瞬态事件与电位有关,其特征在于峰值幅度、持续时间和面积/电荷。统计分析揭示了蛋白质寡聚体的转运及其转变或进一步聚集。这项研究代表了阐明重水中蛋白质转运和聚集动力学有价值见解的第一步,并展示了利用纳米孔在单事件水平上检测和表征动态相变的潜力。

相似文献

9
Aerolysin Nanopore Electrochemistry.气单胞菌溶素纳米孔电化学
Acc Chem Res. 2025 Feb 18;58(4):517-528. doi: 10.1021/acs.accounts.4c00630. Epub 2025 Jan 28.

本文引用的文献

2
Single-Entity Electrochemistry for Digital Biosensing at Ultralow Concentrations.单粒子电化学在超低浓度下的数字生物传感
Anal Chem. 2021 Jul 6;93(26):9023-9031. doi: 10.1021/acs.analchem.1c00510. Epub 2021 Jun 24.
4
Resistive-Pulse Sensing Inside Single Living Cells.在单个活细胞内进行电阻脉冲感应。
J Am Chem Soc. 2020 Mar 25;142(12):5778-5784. doi: 10.1021/jacs.9b13796. Epub 2020 Mar 12.
5
Electrochemical Resistive-Pulse Sensing.电化学电阻脉冲传感。
J Am Chem Soc. 2019 Dec 18;141(50):19555-19559. doi: 10.1021/jacs.9b10329. Epub 2019 Dec 5.
7
Nanopore-Based Single-Biomolecule Interfaces: From Information to Knowledge.基于纳米孔的单分子界面:从信息到知识。
J Am Chem Soc. 2019 Oct 9;141(40):15720-15729. doi: 10.1021/jacs.8b11970. Epub 2019 Sep 25.
9
Neutron scattering in the biological sciences: progress and prospects.中子散射在生物科学中的应用:进展与展望。
Acta Crystallogr D Struct Biol. 2018 Dec 1;74(Pt 12):1129-1168. doi: 10.1107/S2059798318017503. Epub 2018 Dec 20.
10
Perspective and Prospectus on Single-Entity Electrochemistry.单粒子电化学的展望和透视。
J Am Chem Soc. 2018 Nov 21;140(46):15549-15559. doi: 10.1021/jacs.8b09747. Epub 2018 Nov 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验