Suppr超能文献

用于预测合并肺结核的肺癌患者生存情况的炎症-营养生物标志物模型

Inflammation-nutrition biomarker model for survival prediction in lung cancer patients with concurrent tuberculosis.

作者信息

Zhou Hongqi, Zhao Zihao, Wang Jinhai, Jin Weiyun, Xian Bensong, Li Lindi, Nie XiangWen, Wu WeiWei, Chen Ran, Xie QiZhen, Wu HaiXia, Jiang WeiWei, Tang Min, Li YuXin

机构信息

Oncology Department, Guiyang Public Health Treatment Center, Guiyang, China.

Department of Orthopedics, Guiyang Public Health Treatment Center, Guiyang, China.

出版信息

Front Mol Biosci. 2025 Aug 4;12:1624131. doi: 10.3389/fmolb.2025.1624131. eCollection 2025.

Abstract

OBJECTIVES

To explore the prognostic value of eight inflammation-nutrition biomarkers in patients with lung cancer and tuberculosis as no multidimensional prognostic models for this comorbid population are available currently.

METHODOLOGY

A retrospective study included 100 patients with lung cancer and tuberculosis admitted to a tertiary hospital from October 2019 to October 2024. Eight inflammation-nutrition markers (NLR, PLR, SII, LMR, PNI, HALP, HRR, ALB/GLB) were chosen as predictors while overall survival (OS) was the major event. Feature selection was implemented by LASSO regression; a Cox proportional hazards model was established afterwards. The nomogram's performance was assessed by ROC curve and C-index as well as the calibration using bootstrap resampling. The statistical power was calculated by PowerSurvEpi and sensitivity analyses were implemented to test the robustness of the model.

RESULTS

There were six predictors remaining in the final model including diabetes, ECOG PS, NLR, PNI, HRR and RDW. Among them, ECOG PS was an independent prognostic factor (HR = 1.76, p = 0.04). The nomogram achieved a good performance (C-index = 0.71), an AUC of 0.693 for 3-year OS as well as an excellent calibration (Bootstrap P > 0.05). In the high-risk subgroup with ECOG PS ≥ 2 and NLR>8, the 5-year survival rate was close to zero. The model achieved an adequate statistical power (83%, α = 0.05). Sensitivity analysis revealed an significant interaction between ECOG PS and NLR (p = 0.032) and NLR>8 was the most robust threshold for this interaction.

CONCLUSION

This is the first study to establish and validate a combined inflammation-nutrition prognostic model for patients with lung cancer and tuberculosis. Our model provides a quantitative tool to stratify individual risk and offers evidence for the usage of nutritional interventions in high-risk patients.

摘要

目的

由于目前尚无针对该合并症人群的多维预后模型,故探讨八种炎症 - 营养生物标志物对肺癌合并肺结核患者的预后价值。

方法

一项回顾性研究纳入了2019年10月至2024年10月在一家三级医院住院的100例肺癌合并肺结核患者。选择八种炎症 - 营养标志物(中性粒细胞与淋巴细胞比值(NLR)、血小板与淋巴细胞比值(PLR)、全身炎症反应指数(SII)、淋巴细胞与单核细胞比值(LMR)、预后营养指数(PNI)、血清前白蛋白与视黄醇结合蛋白比值(HALP)、血红蛋白与红细胞比值(HRR)、白蛋白/球蛋白比值(ALB/GLB))作为预测因子,总生存期(OS)作为主要事件。通过LASSO回归进行特征选择;随后建立Cox比例风险模型。通过ROC曲线、C指数评估列线图的性能,并使用自助重采样进行校准。通过PowerSurvEpi计算统计效能,并进行敏感性分析以检验模型的稳健性。

结果

最终模型中保留了六个预测因子,包括糖尿病、美国东部肿瘤协作组(ECOG)体能状态评分、NLR、PNI、HRR和红细胞分布宽度(RDW)。其中,ECOG体能状态评分是一个独立的预后因素(风险比(HR)= 1.76,p = 0.04)。列线图表现良好(C指数 = 0.71),3年总生存期的曲线下面积(AUC)为0.693,校准效果极佳(自助法P > 0.05)。在ECOG体能状态评分≥2且NLR>8的高危亚组中,5年生存率接近于零。该模型具有足够的统计效能(83%,α = 0.05)。敏感性分析显示ECOG体能状态评分与NLR之间存在显著交互作用(p = 0.032),且NLR>8是该交互作用最稳健的阈值。

结论

这是第一项为肺癌合并肺结核患者建立并验证联合炎症 - 营养预后模型的研究。我们的模型提供了一种对个体风险进行分层的定量工具,并为高危患者使用营养干预措施提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae15/12358283/63b27d25ad3d/fmolb-12-1624131-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验