文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磷酸萘喹通过破坏细胞膜和诱导活性氧对耐头孢他啶菌的抗菌活性及机制

Antibacterial activity and mechanism of naphthoquine phosphate against ceftazidime-resistant via cell membrane disruption and ROS induction.

作者信息

Yuan Yongtian, Zhao Liangliang, Bei Zhuchun, Wang Baogang, Zhang Dongna, Xu Likun, Liu Jiahui, Lv Meng, Xu Qin, Song Yabin

机构信息

Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.

出版信息

Front Microbiol. 2025 Aug 4;16:1603462. doi: 10.3389/fmicb.2025.1603462. eCollection 2025.


DOI:10.3389/fmicb.2025.1603462
PMID:40831639
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12358481/
Abstract

INTRODUCTION: Drug-resistant bacteria, particularly , present a significant threat to global public health, highlighting the urgent need for novel antibacterial therapies. Drug repurposing has emerged as a promising strategy to accelerate therapeutic development by identifying new applications for existing pharmaceuticals. This study investigates the potential of naphthoquine phosphate (NQP), an antimalarial agent, as a broad-spectrum antibacterial candidate against the multidrug-resistant strain LAC-4. METHODS: To evaluate the antibacterial activity of NQP, we determined the minimum inhibitory concentration (MIC) against LAC-4. Inhibition kinetics were analyzed to assess concentration-dependent effects. Membrane permeability assays were performed to examine NQP-induced changes in cell membrane integrity. Oxidative damage tests were conducted to investigate impacts on bacterial metabolic processes. Morphological changes in LAC-4 treated with NQP of MIC were observed using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Additionally, transcriptome analysis was performed to identify disrupted physiological pathways associated with NQP exposure. RESULTS AND DISCUSSION: NQP exhibited broad-spectrum antibacterial activity, with a MIC of 62.5 μg/mL against LAC-4. Its inhibition kinetics curve confirmed a concentration-dependent inhibitory effect. Membrane permeability tests revealed that NQP disrupts cell membrane integrity, enhancing permeability-consistent with TEM/SEM observations showing significant structural damage in NQP-treated , including membrane rupture, cellular deformation, and cytoplasmic disorganization. Oxidative damage tests indicated NQP impacts bacterial metabolism, and transcriptome analysis further demonstrated that NQP disrupts multiple physiological pathways, primarily through enhanced membrane permeability and induced oxidative stress. These findings support NQP as a promising molecular scaffold for developing novel therapies against infections, highlighting its potential in drug repurposing strategies for combating drug resistance.

摘要

引言:耐药细菌,尤其是[具体细菌名称未给出],对全球公共卫生构成重大威胁,凸显了对新型抗菌疗法的迫切需求。药物重新利用已成为一种有前景的策略,可通过确定现有药物的新用途来加速治疗药物的开发。本研究调查了抗疟药物磷酸萘喹(NQP)作为针对多重耐药菌株LAC - 4的广谱抗菌候选药物的潜力。 方法:为评估NQP的抗菌活性,我们测定了其对LAC - 4的最低抑菌浓度(MIC)。分析抑制动力学以评估浓度依赖性效应。进行膜通透性测定以检查NQP诱导的细胞膜完整性变化。进行氧化损伤测试以研究对细菌代谢过程的影响。使用透射电子显微镜(TEM)和扫描电子显微镜(SEM)观察用MIC浓度的NQP处理的LAC - 4的形态变化。此外,进行转录组分析以确定与NQP暴露相关的受干扰生理途径。 结果与讨论:NQP表现出广谱抗菌活性,对LAC - 4的MIC为62.5μg/mL。其抑制动力学曲线证实了浓度依赖性抑制作用。膜通透性测试表明NQP破坏细胞膜完整性,增强通透性,这与TEM/SEM观察结果一致,显示在NQP处理的[细菌名称未给出]中存在显著结构损伤,包括膜破裂、细胞变形和细胞质紊乱。氧化损伤测试表明NQP影响细菌代谢,转录组分析进一步证明NQP破坏多种生理途径,主要是通过增强膜通透性和诱导氧化应激。这些发现支持NQP作为开发针对[感染类型未明确]感染的新型疗法的有前景分子支架,突出了其在对抗耐药性的药物重新利用策略中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/07d28aa1fa5b/fmicb-16-1603462-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/9a6052fc5d49/fmicb-16-1603462-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/234431ee2518/fmicb-16-1603462-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/53ed1e505691/fmicb-16-1603462-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/d75b95ebd57f/fmicb-16-1603462-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/826447aa416f/fmicb-16-1603462-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/7da3800d26ad/fmicb-16-1603462-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/3d7589fd7bee/fmicb-16-1603462-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/642370b1433e/fmicb-16-1603462-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/8e163e1b115e/fmicb-16-1603462-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/07d28aa1fa5b/fmicb-16-1603462-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/9a6052fc5d49/fmicb-16-1603462-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/234431ee2518/fmicb-16-1603462-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/53ed1e505691/fmicb-16-1603462-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/d75b95ebd57f/fmicb-16-1603462-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/826447aa416f/fmicb-16-1603462-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/7da3800d26ad/fmicb-16-1603462-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/3d7589fd7bee/fmicb-16-1603462-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/642370b1433e/fmicb-16-1603462-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/8e163e1b115e/fmicb-16-1603462-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9965/12358481/07d28aa1fa5b/fmicb-16-1603462-g010.jpg

相似文献

[1]
Antibacterial activity and mechanism of naphthoquine phosphate against ceftazidime-resistant via cell membrane disruption and ROS induction.

Front Microbiol. 2025-8-4

[2]
Exploring the additive antibacterial potential of volatile oil and imipenem against : a multi-omics investigation.

Front Microbiol. 2025-7-2

[3]
Isolation and characterization of phages ΦZC2 and ΦZC3 against carbapenem-resistant Acinetobacter baumannii, and efficacy of ΦZC3 on A549 cells.

Virol J. 2025-7-30

[4]
Potential of Cannabidiol (CBD) to overcome extensively drug-resistant Acinetobacter baumannii.

BMC Complement Med Ther. 2025-8-15

[5]
Construction and Characterization of an lpxM-Deficient Strain Using a pyrF/5-FOA Counterselection System.

Infect Drug Resist. 2025-6-27

[6]
Biological activities of optimized biosynthesized selenium nanoparticles using Proteus mirabilis PQ350419 alone or combined with chitosan and ampicillin against common multidrug-resistant bacteria.

Microb Cell Fact. 2025-7-5

[7]
CRISPR/Cas9-targeted smpB mutation revealing roles in biofilm formation, motility, and antibiotic susceptibility in Acinetobacter baumannii.

PLoS One. 2025-8-4

[8]
Identification of determinants that allow maintenance of high-level fluoroquinolone resistance in .

mBio. 2025-1-8

[9]
The antimicrobial peptide Cec4 has therapeutic potential against clinical carbapenem-resistant .

Microbiol Spectr. 2025-7

[10]
Sodium ibuprofenate: antibacterial activities and potential β-lactamase inhibition in critical Gram-negative bacteria.

Future Microbiol. 2025-4

本文引用的文献

[1]
Antimicrobial resistance: Current challenges and future directions.

Med J Armed Forces India. 2025

[2]
ESKAPE pathogens rapidly develop resistance against antibiotics in development in vitro.

Nat Microbiol. 2025-2

[3]
Antibacterial, Antifungal, Antiviral Activity, and Mechanisms of Action of Plant Polyphenols.

Microorganisms. 2024-12-4

[4]
Antimicrobial resistance: a concise update.

Lancet Microbe. 2025-1

[5]
Discovery of petroselinic acid with in vitro and in vivo antifungal activity by targeting fructose-1,6-bisphosphate aldolase.

Phytomedicine. 2024-10

[6]
ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics.

Nat Rev Microbiol. 2024-10

[7]
ESKAPE in China: epidemiology and characteristics of antibiotic resistance.

Emerg Microbes Infect. 2024-12

[8]
: an evolving and cunning opponent.

Front Microbiol. 2024-1-22

[9]
Natural phenolic compounds: Antimicrobial properties, antimicrobial mechanisms, and potential utilization in the preservation of aquatic products.

Food Chem. 2024-5-15

[10]
1,8-Cineol (Eucalyptol) Disrupts Membrane Integrity and Induces Oxidative Stress in Methicillin-Resistant .

Antioxidants (Basel). 2023-7-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索