Ptak Radek, Doganci Naz, Marti Emilie, Coll Sélim Yahia
Research Group Spatial Attention, Perception and Action, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Division of Neurorehabilitation, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland.
Imaging Neurosci (Camb). 2025 Aug 14;3. doi: 10.1162/IMAG.a.112. eCollection 2025.
Mental transformations, such as mental rotation, rely on motor representations and engage neural processes similarly to physical actions. Neuroimaging studies reveal that mental rotation activates the occipito-parietal cortex and motor-related areas, with differences based on whether stimuli are bodily or non-bodily. These findings emphasize the role of frontoparietal networks in mental rotation, similar to those used in motor planning. This study investigated whether resting-state functional connectivity of the left lateral prefrontal cortex (lPFC), a region linked to motor planning, and other functional brain networks predicts mental rotation performance. Fifty-nine healthy individuals underwent functional magnetic resonance imaging (fMRI) to capture resting-state blood oxygenation level dependent (BOLD) activity and completed mental rotation tasks using bodily (hands) and non-bodily (letters) stimuli. Performance in both mental rotation tasks exhibited the expected peak of difficulty with completely inverted stimuli, which require a mental transformation of 180 degrees. At the functional level, mental rotation error rates correlated with lPFC connectivity to the default mode network (DMN). However, this relationship was negative and much stronger for the hands task, indicating that lPFC-DMN interactions were associated with poorer mental rotation performance. These results indicate that effective mental rotation relies on the functional disconnection of the DMN from motor planning networks. The findings highlight the significance of studying resting-state functional connectivity to understand how brain networks contribute to cognitive functions and how their interactions can enhance or impair performance. This work advances our understanding of the neural mechanisms underlying mental rotation, emphasizing the interplay between motor cognition and resting-state dynamics.
诸如心理旋转之类的心理转换依赖于运动表征,并与身体动作类似地激活神经过程。神经影像学研究表明,心理旋转会激活枕顶叶皮层和与运动相关的区域,根据刺激是身体相关还是非身体相关而存在差异。这些发现强调了额顶叶网络在心理旋转中的作用,类似于运动规划中使用的网络。本研究调查了与运动规划相关的左侧前额叶皮层(lPFC)的静息态功能连接以及其他功能性脑网络是否能预测心理旋转表现。59名健康个体接受了功能磁共振成像(fMRI)以捕捉静息态血氧水平依赖(BOLD)活动,并使用身体相关(手部)和非身体相关(字母)刺激完成心理旋转任务。在两个心理旋转任务中,对于完全倒置的刺激(需要180度的心理转换),表现都呈现出预期的难度峰值。在功能层面,心理旋转错误率与lPFC与默认模式网络(DMN)的连接性相关。然而,这种关系是负相关的,并且在手部任务中更强,表明lPFC-DMN相互作用与较差的心理旋转表现相关。这些结果表明,有效的心理旋转依赖于DMN与运动规划网络的功能断开。这些发现凸显了研究静息态功能连接对于理解脑网络如何促进认知功能以及它们的相互作用如何增强或损害表现的重要性。这项工作推进了我们对心理旋转潜在神经机制的理解,强调了运动认知与静息态动力学之间的相互作用。