Suppr超能文献

GraphCheck:借助提取的知识图谱驱动的事实核查打破长期文本障碍。

GraphCheck: Breaking Long-Term Text Barriers with Extracted Knowledge Graph-Powered Fact-Checking.

作者信息

Chen Yingjian, Liu Haoran, Liu Yinhong, Xie Jinxiang, Yang Rui, Yuan Han, Fu Yanran, Zhou Peng Yuan, Chen Qingyu, Caverlee James, Li Irene

机构信息

University of Tokyo.

Texas A&M University.

出版信息

Proc Conf Assoc Comput Linguist Meet. 2025 Jul;2025:14976-14995. doi: 10.18653/v1/2025.acl-long.729.

Abstract

Large language models (LLMs) are widely used, but they often generate subtle factual errors, especially in long-form text. These errors are fatal in some specialized domains such as medicine. Existing fact-checking with grounding documents methods face two main challenges: (1) they struggle to understand complex multihop relations in long documents, often overlooking subtle factual errors; (2) most specialized methods rely on pairwise comparisons, requiring multiple model calls, leading to high resource and computational costs. To address these challenges, we propose , a fact-checking framework that uses extracted knowledge graphs to enhance text representation. Graph Neural Networks further process these graphs as a soft prompt, enabling LLMs to incorporate structured knowledge more effectively. Enhanced with graph-based reasoning, GraphCheck captures multihop reasoning chains that are often overlooked by existing methods, enabling precise and efficient fact-checking in a single inference call. Experimental results on seven benchmarks spanning both general and medical domains demonstrate up to a 7.1% overall improvement over baseline models. Notably, GraphCheck outperforms existing specialized fact-checkers and achieves comparable performance with state-of-the-art LLMs, such as DeepSeek-V3 and OpenAI-o1, with significantly fewer parameters.

摘要

大语言模型(LLMs)被广泛使用,但它们经常会产生细微的事实性错误,尤其是在长篇文本中。这些错误在医学等一些专业领域是致命的。现有的基于基础文档的事实核查方法面临两个主要挑战:(1)它们难以理解长文档中复杂的多跳关系,常常忽略细微的事实性错误;(2)大多数专门方法依赖成对比较,需要多次调用模型,导致资源和计算成本高昂。为应对这些挑战,我们提出了GraphCheck,这是一个使用提取的知识图谱来增强文本表示的事实核查框架。图神经网络将这些图谱进一步处理为软提示,使大语言模型能够更有效地整合结构化知识。通过基于图的推理进行增强,GraphCheck捕捉到现有方法常常忽略的多跳推理链,从而在单次推理调用中实现精确且高效的事实核查。在涵盖通用领域和医学领域的七个基准测试中的实验结果表明,与基线模型相比,总体改进高达7.1%。值得注意的是,GraphCheck优于现有的专门事实核查器,并且在参数显著更少的情况下,与诸如DeepSeek-V3和OpenAI-o1等最先进的大语言模型取得了相当的性能。

相似文献

7
Systemic treatments for metastatic cutaneous melanoma.转移性皮肤黑色素瘤的全身治疗
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验