Suppr超能文献

Tau蛋白驱动海马结构的细胞特异性功能隔离。

Tau drives cell specific functional isolation of the hippocampal formation.

作者信息

Zwang Theodore J, Zhang Jasen, Gelb-Bicknell Rudy, Wolf Nina, Chanchykov Viktor, Zhu Haoyang, Agastra Ergina, Devine Ava, Holbrook Andrew J, Bennett Rachel E, Hyman Bradley T

机构信息

Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.

Harvard Medical School, Boston, MA, USA.

出版信息

bioRxiv. 2025 Aug 11:2025.08.10.669580. doi: 10.1101/2025.08.10.669580.

Abstract

A major challenge in understanding Alzheimer's disease is linking changes that occur across different biological scales. For example, how do changes in individual neurons build into widespread network disruptions? To address this, we used flexible mesh electronics to record neuronal activity for six months in ThyTau22 mice, a model of tauopathy that accumulates mutant human tau with age. Electrophysiology was recorded simultaneously from the hippocampus and entorhinal cortex of awake, behaving mice. At all ages we observed neuron-level, tau-driven silencing including ages without detectable tangles or cell-death. We found an unexpected phenomenon: neurons silenced by tau spontaneously recover individual firing patterns, yet these neurons fail to regain normal network interactions. Thus, as the animals age, disrupted network-level activity emerges. Specifically, we observe a global decrease in excitatory interactions and a breakdown in gamma-band coherence, which is particularly disrupted between the entorhinal cortex and hippocampus. These observations reveal a temporal relationship between neuronal silencing and impaired network connectivity, which also contributes to a progressive disruption in the excitatory/inhibitory balance. This ultimately disconnects viable entorhinal-hippocampal connections, physiologically isolating the hippocampus. Importantly, this network dysfunction is not driven by neuron loss, but by the failure of neurons to re-establish proper network interactions after silencing. This reveals a previously unrecognized mechanism by which mutant tau can destabilize neural systems. Further, these experiments indicate that a therapeutic window may exist where neuronal function and network activity might still be restored prior to irreversible degeneration.

摘要

理解阿尔茨海默病的一个主要挑战是将不同生物尺度上发生的变化联系起来。例如,单个神经元的变化是如何导致广泛的网络破坏的?为了解决这个问题,我们使用了柔性网状电子设备,在ThyTau22小鼠中记录了六个月的神经元活动,ThyTau22小鼠是一种随着年龄增长积累突变人类tau蛋白的tau病变模型。在清醒、活动的小鼠的海马体和内嗅皮层同时记录电生理活动。在所有年龄段,我们都观察到了tau蛋白驱动的神经元水平的沉默,包括在没有可检测到的缠结或细胞死亡的年龄段。我们发现了一个意外的现象:被tau蛋白沉默的神经元会自发恢复单个放电模式,但这些神经元无法重新建立正常的网络相互作用。因此,随着动物年龄的增长,会出现网络水平的活动紊乱。具体来说,我们观察到兴奋性相互作用的整体下降以及γ波段相干性的破坏,这在内嗅皮层和海马体之间尤其明显。这些观察结果揭示了神经元沉默与网络连接受损之间的时间关系,这也导致了兴奋性/抑制性平衡的逐渐破坏。这最终会切断内嗅-海马的可行连接,在生理上隔离海马体。重要的是,这种网络功能障碍不是由神经元损失驱动的,而是由神经元在沉默后未能重新建立适当的网络相互作用导致的。这揭示了一种以前未被认识到的机制,通过这种机制突变的tau蛋白可以破坏神经系统的稳定性。此外,这些实验表明可能存在一个治疗窗口期,在不可逆的退化之前,神经元功能和网络活动仍有可能恢复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/312a/12363901/eb6475729271/nihpp-2025.08.10.669580v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验