Suppr超能文献

在小鼠的整个成年期追踪同一细胞的神经活动。

Tracking neural activity from the same cells during the entire adult life of mice.

作者信息

Zhao Siyuan, Tang Xin, Tian Weiwen, Partarrieu Sebastian, Liu Ren, Shen Hao, Lee Jaeyong, Guo Shiqi, Lin Zuwan, Liu Jia

机构信息

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.

出版信息

Nat Neurosci. 2023 Apr;26(4):696-710. doi: 10.1038/s41593-023-01267-x. Epub 2023 Feb 20.

Abstract

Stably recording the electrical activity of the same neurons over the adult life of an animal is important to neuroscience research and biomedical applications. Current implantable devices cannot provide stable recording on this timescale. Here, we introduce a method to precisely implant electronics with an open, unfolded mesh structure across multiple brain regions in the mouse. The open mesh structure forms a stable interwoven structure with the neural network, preventing probe drifting and showing no immune response and neuron loss during the year-long implantation. Rigorous statistical analysis, visual stimulus-dependent measurement and unbiased, machine-learning-based analysis demonstrated that single-unit action potentials have been recorded from the same neurons of behaving mice in a very long-term stable manner. Leveraging this stable structure, we demonstrated that the same neurons can be recorded over the entire adult life of the mouse, revealing the aging-associated evolution of single-neuron activities.

摘要

在动物的成年期稳定记录同一神经元的电活动对神经科学研究和生物医学应用至关重要。目前的可植入设备无法在这个时间尺度上提供稳定记录。在此,我们介绍一种方法,可将具有开放、展开网状结构的电子器件精确植入小鼠的多个脑区。这种开放的网状结构与神经网络形成稳定的交织结构,防止探针漂移,并且在长达一年的植入过程中未显示出免疫反应和神经元损失。严格的统计分析、视觉刺激依赖性测量以及基于无偏机器学习的分析表明,已以非常长期稳定的方式从行为小鼠的同一神经元记录到单单元动作电位。利用这种稳定结构,我们证明可以在小鼠的整个成年期记录同一神经元,揭示单神经元活动与衰老相关的演变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验