Wang Xinyue, Xu Hui, Wang Qing, Ma Jialong, Lin Miao-Chun, Zhou Li, Wu Mengyao, Hao Guoxiu, Du Yuexin, Li Ao, An Yuanyuan, Zhang Xiehaoran, Chang Wei-Ting, Chen I-Chin, Lu Haofan, Li Jian, Tsai Hui-Hsu Gavin, Liu Haiming, Shieh Fa-Kuen, Chou Lien-Yang
School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P.R. China.
Department of Chemistry, National Central University, Taoyuan, 32001, Taiwan.
Angew Chem Int Ed Engl. 2025 Aug 20:e202509275. doi: 10.1002/anie.202509275.
Conventional syntheses of robust Zr-based metal-organic frameworks (Zr-MOFs) rely on harsh solvothermal conditions, precluding the inclusion of fragile functionalities such as enzymes or organisms. Therefore, developing routes to such stable frameworks under ambient conditions remains a significant challenge. Here, we report a mild aqueous solid-state crystallization (SSC) strategy that enables Zr-MOF assembly at ambient temperature. This approach transforms an amorphous precursor into a crystalline framework via water-mediated dynamic ligand exchange. Solid-state C NMR spectroscopy and density functional theory calculations reveal an acid-catalyzed associative substitution mechanism at Zr nodes, in which formate modulators are protonated and displaced by fumarate linkers, driving MOF-801 crystallization without external heating or organic solvent. We further apply this SSC method to other Zr-MOFs, including functionalized UiO-66 analogues, establishing it as a general model for ambient MOF assembly. This amorphous-to-crystalline transformation represents a new synthetic paradigm for constructing stable porous frameworks under biocompatible conditions and enables the integration of sensitive biomolecules (e.g., enzymes) into robust MOFs. In addition, this method for MOF-801 formation is universally adaptable for encapsulating various proteins. The enzyme@Zr-MOF composites significantly enhance enzyme stability in catalytic reactions involving acidic products, demonstrating the necessity of robust Zr-MOF shells.
传统的坚固锆基金属有机框架(Zr-MOFs)合成方法依赖于苛刻的溶剂热条件,这排除了诸如酶或生物体等脆弱功能基团的引入。因此,在环境条件下开发通往此类稳定框架的路线仍然是一项重大挑战。在此,我们报告了一种温和的水相固态结晶(SSC)策略,该策略能够在环境温度下实现Zr-MOF的组装。这种方法通过水介导的动态配体交换将无定形前体转化为晶体框架。固态碳核磁共振光谱和密度泛函理论计算揭示了在锆节点处的酸催化缔合取代机制,其中甲酸根调节剂被质子化并被富马酸根连接体取代,从而在无需外部加热或有机溶剂的情况下驱动MOF-801结晶。我们进一步将这种SSC方法应用于其他Zr-MOFs,包括功能化的UiO-66类似物,将其确立为环境MOF组装的通用模型。这种从无定形到晶体的转变代表了一种在生物相容条件下构建稳定多孔框架的新合成范式,并能够将敏感生物分子(如酶)整合到坚固的MOF中。此外用于形成MOF-801的这种方法普遍适用于封装各种蛋白质。酶@Zr-MOF复合材料在涉及酸性产物的催化反应中显著提高了酶的稳定性,证明了坚固的Zr-MOF外壳的必要性。