Cheng Ningtao, Deng Yuling, Cao Xinmei, Tao Yi
School of Public Health, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China.
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China.
Biosens Bioelectron. 2025 Dec 1;289:117901. doi: 10.1016/j.bios.2025.117901. Epub 2025 Aug 18.
Foodborne pathogens significantly impact public health and cause substantial economic losses globally, necessitating rapid, sensitive, and multiplex detection techniques. This study presents a novel surface-enhanced Raman spectroscopy (SERS) biosensor enabling highly sensitive and simultaneous detection of Salmonella enteritidis (S. enteritidis) and Pseudomonas aeruginosa (P. aeruginosa). The biosensor utilizes sculpted triangular silicon substrates (stSi) decorated uniformly with silver (Ag) and gold (Au) nanoparticles (stSi@Ag-Au), fabricated through electrochemical reduction and galvanic displacement methods, creating robust electromagnetic hotspots. Functional gold nanostars synthesized via a seed-mediated growth method were deposited onto stSi@Ag-Au, forming a Raman-active substrate, which was further modified with pathogen-specific aptamers and distinct Raman probes-5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) for S. enteritidis and 4-(mercaptomethyl)benzonitrile (MMBN) for P. aeruginosa. These components assemble into supramolecular complexes capable of specifically recognizing target pathogens, generating intense, unique Raman signals in a concentration-dependent manner, enabling concurrent quantitative analysis of both pathogens. The developed method achieves rapid detection within 45 min, demonstrates a broad linear detection range (10°-10 CFU mL) with detection limits of 1.33 CFU mL (Salmonella enteritidis) and 1.12 CFU mL (Pseudomonas aeruginosa), and has been successfully validated in practical applications in diverse matrices, including drinking water, orange juice, and Dendrobium nobile Lindl. juice samples, underscoring its effectiveness for rapid food safety assessments. Overall, this supramolecular-based SERS biosensing strategy provides a highly sensitive, rapid, and reliable solution for simultaneous pathogen detection, significantly advancing capabilities in foodborne disease prevention and control.
食源性病原体对公众健康有重大影响,并在全球范围内造成巨大经济损失,因此需要快速、灵敏且能进行多重检测的技术。本研究提出了一种新型表面增强拉曼光谱(SERS)生物传感器,能够高度灵敏且同时检测肠炎沙门氏菌(Salmonella enteritidis,简称S. enteritidis)和铜绿假单胞菌(Pseudomonas aeruginosa,简称P. aeruginosa)。该生物传感器利用通过电化学还原和电置换法制备的、均匀装饰有银(Ag)和金(Au)纳米颗粒的雕刻三角形硅基底(sculpted triangular silicon substrates,简称stSi),即stSi@Ag-Au,以产生强大的电磁热点。通过种子介导生长法合成的功能性金纳米星沉积在stSi@Ag-Au上,形成拉曼活性基底,并进一步用病原体特异性适配体和不同的拉曼探针进行修饰,用于肠炎沙门氏菌的5,5'-二硫代双(2-硝基苯甲酸)(DTNB)和用于铜绿假单胞菌的4-(巯基甲基)苄腈(MMBN)。这些组件组装成能够特异性识别目标病原体的超分子复合物,以浓度依赖的方式产生强烈、独特的拉曼信号,从而能够对两种病原体进行同时定量分析。所开发的方法在45分钟内即可实现快速检测,具有宽线性检测范围(10°-10 CFU mL),肠炎沙门氏菌的检测限为1.33 CFU mL,铜绿假单胞菌的检测限为1.12 CFU mL,并且已在包括饮用水、橙汁和铁皮石斛汁样品等多种基质的实际应用中成功得到验证,突出了其在快速食品安全评估方面的有效性。总体而言,这种基于超分子的SERS生物传感策略为同时检测病原体提供了一种高度灵敏、快速且可靠的解决方案,显著提升了食源性疾病预防和控制的能力。