Suppr超能文献

MANet:用于息肉分割的多注意力网络。

MANet: multi-attention network for polyp segmentation.

作者信息

Jian Muwei, Yang Nan, Zhu Chengzhan

机构信息

School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan, 250000, China; School of Information Science and Engineering, Linyi University, Linyi, 276000, China; School of Information Science and Engineering, Qilu Normal University, Jinan 250200, China.

School of Information Science and Engineering, Linyi University, Linyi, 276000, China.

出版信息

Med Eng Phys. 2025 Sep;143:104396. doi: 10.1016/j.medengphy.2025.104396. Epub 2025 Jul 8.

Abstract

Currently, colonoscopy stands as the most efficient approach for detecting colorectal polyps. In clinical diagnosis, colorectal cancer is closely related to colorectal polyps. Therefore, precise segmentation of polyps holds paramount importance for the early detection and clinical diagnosis of colorectal cancer. Among conventional segmentation methods, multi-layer feature extraction is prone to ignore shallow features, while the segmentation of diminutive polyps perpetually depends on shallow features. Meanwhile, some polyps are frequently hide confusingly in the background due to their own characteristics, resulting in high similarity and low contrast in the anterior and posterior views, which causes an aggravation of distinguishing colorectal polyps during segmentation. In this work, we depict a multi-attention built upon polyp automatic segmentation network, which is called multi-attention network (MANet). In detail, we first implement the shallow feature extraction module (SFEM) to augment the representation ability of diminutive polyps. Then, to conquer the visual confusion of background similarity in the polyp region, a camouflage identification module (CIM) is devised to better identify the polyp region and assisted in segmentation of polyps. Finally, CIM is combined with the extracted shallow features to ameliorate the accuracy of polyp segmentation. Qualitative evaluation on five challenging datasets shows that our proposed multi-attention-based network model shows promising segmentation accuracy, especially in detecting small polyps with low contrast.

摘要

目前,结肠镜检查是检测结直肠息肉最有效的方法。在临床诊断中,结直肠癌与结直肠息肉密切相关。因此,息肉的精确分割对于结直肠癌的早期检测和临床诊断至关重要。在传统的分割方法中,多层特征提取容易忽略浅层特征,而微小息肉的分割始终依赖于浅层特征。同时,一些息肉由于自身特点常常在背景中隐匿得很模糊,导致前后视图的相似度高、对比度低,这使得在分割过程中区分结直肠息肉的难度加大。在这项工作中,我们描述了一种基于息肉自动分割网络构建的多注意力模型,称为多注意力网络(MANet)。具体来说,我们首先实现浅层特征提取模块(SFEM)以增强微小息肉的表征能力。然后,为了克服息肉区域背景相似度带来的视觉混淆,设计了一个伪装识别模块(CIM)以更好地识别息肉区域并辅助息肉分割。最后,将CIM与提取的浅层特征相结合以提高息肉分割的准确性。在五个具有挑战性的数据集上的定性评估表明,我们提出的基于多注意力的网络模型显示出了有前景的分割精度,尤其是在检测对比度低的小息肉方面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验