Qu Yunpeng, Chen Na, Teng Hanchao, Hu Hai, Sun Jianzhe, Yu Renwen, Hu Debo, Xue Mengfei, Li Chi, Wu Bin, Chen Jianing, Sun Zhipei, Liu Mengkun, Liu Yunqi, García de Abajo F Javier, Dai Qing
CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Adv Mater. 2022 Jun;34(23):e2105590. doi: 10.1002/adma.202105590. Epub 2022 Apr 27.
Manipulation of the propagation and energy-transport characteristics of subwavelength infrared (IR) light fields is critical for the application of nanophotonic devices in photocatalysis, biosensing, and thermal management. In this context, metamaterials are useful composite materials, although traditional metal-based structures are constrained by their weak mid-IR response, while their associated capabilities for optical propagation and focusing are limited by the size of attainable artificial optical structures and the poor performance of the available active means of control. Herein, a tunable planar focusing device operating in the mid-IR region is reported by exploiting highly oriented in-plane hyperbolic phonon polaritons in α-MoO . Specifically, an unprecedented change of effective focal length of polariton waves from 0.7 to 7.4 μm is demonstrated by the following three different means of control: the dimension of the device, the employed light frequency, and engineering of phonon-plasmon hybridization. The high confinement characteristics of phonon polaritons in α-MoO permit the focal length and focal spot size to be reduced to 1/15 and 1/33 of the incident wavelength, respectively. In particular, the anisotropic phonon polaritons supported in α-MoO are combined with tunable surface-plasmon polaritons in graphene to realize in situ and dynamical control of the focusing performance, thus paving the way for phonon-polariton-based planar nanophotonic applications.
操纵亚波长红外(IR)光场的传播和能量传输特性对于纳米光子器件在光催化、生物传感和热管理中的应用至关重要。在这种背景下,超材料是有用的复合材料,尽管传统的基于金属的结构受到其较弱的中红外响应的限制,而它们相关的光传播和聚焦能力则受到可实现的人工光学结构尺寸以及现有主动控制手段性能不佳的限制。在此,通过利用α-MoO 中高度取向的面内双曲线型声子极化激元,报道了一种在中红外区域工作的可调谐平面聚焦器件。具体而言,通过以下三种不同的控制方式,展示了极化激元波有效焦距从0.7到7.4μm的前所未有的变化:器件尺寸、所采用的光频率以及声子-等离子体杂交工程。α-MoO 中声子极化激元的高限制特性使得焦距和焦斑尺寸分别减小到入射波长的1/15和1/33。特别是,α-MoO 中支持的各向异性声子极化激元与石墨烯中可调谐的表面等离子体极化激元相结合,以实现聚焦性能的原位和动态控制,从而为基于声子极化激元的平面纳米光子应用铺平了道路。