Makar Maggie, Guttag John, Wiens Jenna
CSAIL, MIT, Cambridge, MA.
CSE, University of Michigan, Ann Arbor, MI.
Proc AAAI Conf Artif Intell. 2018 Feb;32(1). doi: 10.1609/aaai.v32i1.11305. Epub 2018 Apr 25.
When an infection spreads in a community, an individual's probability of becoming infected depends on both her susceptibility and exposure to the contagion through contact with others. While one often has knowledge regarding an individual's susceptibility, in many cases, whether or not an individual's contacts are contagious is unknown. We study the problem of predicting if an individual will adopt a contagion in the presence of multiple modes of infection (exposure/susceptibility) and latent neighbor influence. We present a generative probabilistic model and a variational inference method to learn the parameters of our model. Through a series of experiments on synthetic data, we measure the ability of the proposed model to identify latent spreaders, and predict the risk of infection. Applied to a real dataset of 20,000 hospital patients, we demonstrate the utility of our model in predicting the onset of a healthcare associated infection using patient room-sharing and nurse-sharing networks. Our model outperforms existing benchmarks and provides actionable insights for the design and implementation of targeted interventions to curb the spread of infection.
当感染在社区中传播时,个体被感染的概率既取决于其易感性,也取决于通过与他人接触而接触到传染病原体的情况。虽然人们通常了解个体的易感性,但在许多情况下,个体的接触者是否具有传染性却并不清楚。我们研究在存在多种感染模式(接触/易感性)和潜在邻居影响的情况下,预测个体是否会感染传染病的问题。我们提出了一种生成概率模型和一种变分推理方法来学习模型的参数。通过对合成数据进行一系列实验,我们衡量了所提出模型识别潜在传播者以及预测感染风险的能力。将其应用于一个包含20000名医院患者的真实数据集,我们展示了我们的模型在利用患者病房共享和护士共享网络预测医疗相关感染发病方面的效用。我们的模型优于现有基准,并为设计和实施针对性干预措施以遏制感染传播提供了可操作的见解。