Suppr超能文献

20年的磁粒子成像——从专利到临床应用。

20 years of magnetic particle imaging - from patents to patients.

作者信息

Ahlborg Mandy, Buzug Thorsten M, Wegner Franz

机构信息

Fraunhofer IMTE, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Lübeck, Germany.

Fraunhofer IMTE, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Lübeck, Germany; Institute of Medical Engineering, University of Lübeck, Lübeck, Germany.

出版信息

Biochem Biophys Res Commun. 2025 Sep 25;781:152510. doi: 10.1016/j.bbrc.2025.152510. Epub 2025 Aug 16.

Abstract

Magnetic Particle Imaging (MPI) has evolved over the past two decades from a conceptual imaging innovation to a promising modality ready for translation into clinical settings. MPI visualizes the distribution of superparamagnetic iron oxide nanoparticles (SPIONs) using time-varying magnetic fields and offers unique advantages such as high sensitivity, real-time 3D imaging, and the absence of ionizing radiation. This review traces key milestones in MPI's development across instrumentation, algorithmics, tracer systems, and medical applications. Advances in scanner technology include field-free point and field-free line architectures, with preclinical and now human-scale systems enabling imaging of extremities and the brain. Reconstruction methods in MPI have evolved along two complementary paths: system matrix-based reconstruction and x-space algorithms. Both approaches are well-established and offer distinct advantages in terms of image quality, computational efficiency, and application-specific flexibility. In parallel, nanoparticle design has advanced significantly, with novel tracers like SPION-loaded erythrocytes, magnetosomes, and SMART rhesins improving circulation time, specificity, or signal quality. MPI's sensitivity allows for diverse biomedical applications, including cardiovascular imaging, endovascular intervention guidance, stroke detection, perfusion monitoring, and cell tracking. The integration of MPI with other modalities such as MRI and CT further expands its diagnostic potential by adding an anatomical background. The recent reintroduction of a clinically approved tracer (Resotran) and the emergence of human-scale scanners mark important steps toward clinical implementation. As the field moves forward, the validation of clinical benefit through prospective trials remains a key challenge. Nevertheless, current momentum strongly suggests that MPI is ready to become a valuable tool in clinical diagnostics within the near future.

摘要

在过去二十年中,磁粒子成像(MPI)已从一种概念性的成像创新发展成为一种有望转化为临床应用的成像方式。MPI利用随时间变化的磁场可视化超顺磁性氧化铁纳米颗粒(SPIONs)的分布,并具有高灵敏度、实时三维成像和无电离辐射等独特优势。本文回顾了MPI在仪器、算法、示踪剂系统和医学应用等方面发展的关键里程碑。扫描仪技术的进步包括无场点和无场线架构,临床前以及现在的人体规模系统能够对四肢和大脑进行成像。MPI的重建方法沿着两条互补的路径发展:基于系统矩阵的重建和x空间算法。这两种方法都已成熟,在图像质量、计算效率和特定应用灵活性方面具有明显优势。与此同时,纳米颗粒设计取得了显著进展,新型示踪剂如负载SPION的红细胞、磁小体和SMART凝溶蛋白改善了循环时间、特异性或信号质量。MPI的灵敏度使其可用于多种生物医学应用,包括心血管成像、血管内介入引导、中风检测、灌注监测和细胞追踪。MPI与MRI和CT等其他成像方式的整合通过添加解剖学背景进一步扩大了其诊断潜力。最近重新引入临床批准的示踪剂(Resotran)以及人体规模扫描仪的出现标志着向临床应用迈出了重要一步。随着该领域的发展,通过前瞻性试验验证临床益处仍然是一项关键挑战。尽管如此,目前的发展态势强烈表明,MPI在不久的将来有望成为临床诊断中的一种有价值的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验