Son Namrye, Kang Inchul, Kim Inhu, Lee Keehyuck, Nam Sejin, Lee Donghyoung
Software-Centered University Project Group, Chonnam National University, Gwangju, Korea.
Research & Development Center, ezCaretech Co. Ltd., Seoul, Korea.
Healthc Inform Res. 2025 Jul;31(3):218-225. doi: 10.4258/hir.2025.31.3.218. Epub 2025 Jul 31.
This study aimed to develop and evaluate a retrieval-augmented generation (RAG)-based chatbot system designed to optimize hospital operations. By leveraging electronic medical record (EMR) manuals, the system seeks to streamline administrative workflows and enhance healthcare delivery.
The system integrated fine-tuned multilingual embedding models (Multilingual-E5-Large and BGE-M3) for indexing and retrieving information from EMR manuals. A dataset comprising 5,931 question-document pairs was constructed through query augmentation and validated by domain experts. Fine-tuning was performed using contrastive learning to enhance semantic understanding, with performance assessed using top-k accuracy metrics. The Solar Mini Chat API was adopted for text generation, prioritizing Korean-language responses and cost efficiency.
The fine-tuned models demonstrated marked improvements in retrieval accuracy, with BGE-M3 achieving 97.6% and Multilingual-E5-Large reaching 89.7%. The chatbot achieved high performance, with query latency under 10 ms and robust retrieval precision, effectively addressing operational EMR queries. Key applications included administrative task support and billing process optimization, highlighting its potential to reduce staff workload and enhance healthcare service delivery.
The RAG-based chatbot system successfully addressed critical challenges in healthcare administration, improving EMR usability and operational efficiency. Future research should focus on realworld deployment and longitudinal studies to further evaluate its impact on administrative burden reduction and workflow improvement.
本研究旨在开发并评估一个基于检索增强生成(RAG)的聊天机器人系统,该系统旨在优化医院运营。通过利用电子病历(EMR)手册,该系统旨在简化行政工作流程并改善医疗服务提供。
该系统集成了经过微调的多语言嵌入模型(多语言-E5-大型模型和BGE-M3),用于从EMR手册中索引和检索信息。通过查询增强构建了一个包含5931个问题-文档对的数据集,并由领域专家进行了验证。使用对比学习进行微调以增强语义理解,使用前k准确率指标评估性能。采用Solar Mini Chat API进行文本生成,优先考虑韩语回复和成本效益。
经过微调的模型在检索准确率方面有显著提高,BGE-M3达到97.6%,多语言-E5-大型模型达到89.7%。该聊天机器人性能出色,查询延迟在10毫秒以下,检索精度高,有效解决了EMR操作查询问题。关键应用包括行政任务支持和计费流程优化,凸显了其减轻员工工作量和改善医疗服务提供的潜力。
基于RAG的聊天机器人系统成功应对了医疗管理中的关键挑战,提高了EMR的可用性和运营效率。未来的研究应侧重于实际部署和纵向研究,以进一步评估其对减轻行政负担和改进工作流程的影响。