Wei Lijiao, Wang Shuo, Liang Xinwei, Du Dongjie, Huang Xinyi, Li Ming, Hua Yuangang, Huang Weihua, Zheng Zhenhui
Agricultural Machinery Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
Key Laboratory of Agricultural Equipment for Tropical Crops, Ministry of Agriculture and Rural Affairs, Zhanjiang, China.
Front Plant Sci. 2025 Jul 30;16:1643967. doi: 10.3389/fpls.2025.1643967. eCollection 2025.
Accurate detection of sugarcane nodes in complex field environments is a critical prerequisite for intelligent seed cutting and automated planting. However, existing detection methods often suffer from large model sizes and suboptimal performance, limiting their applicability on resource-constrained edge devices. To address these challenges, we propose Slim-Sugarcane, a lightweight and high-precision node detection framework optimized for real-time deployment in natural agricultural settings. Built upon YOLOv8, our model integrates GSConv, a hybrid convolution module combining group and spatial convolutions, to significantly reduce computational overhead while maintaining detection accuracy. We further introduce a Cross-Stage Local Network module featuring a single-stage aggregation strategy, which effectively minimizes structural redundancy and enhances feature representation. The proposed framework is optimized with TensorRT and deployed using FP16 quantization on the NVIDIA Jetson Orin NX platform to ensure real-time performance under limited hardware conditions. Experimental results demonstrate that Slim-Sugarcane achieves a precision of 0.922, recall of 0.802, and mean average precision of 0.852, with an inference latency of only 60.1 ms and a GPU memory footprint of 1434 MB. The proposed method exhibits superior accuracy and computational efficiency compared to existing approaches, offering a promising solution for precision agriculture and intelligent sugarcane cultivation.
在复杂的田间环境中准确检测甘蔗节点是智能切种和自动种植的关键前提。然而,现有的检测方法往往存在模型规模大、性能欠佳的问题,限制了它们在资源受限的边缘设备上的适用性。为应对这些挑战,我们提出了Slim-Sugarcane,这是一个轻量级且高精度的节点检测框架,针对自然农业环境中的实时部署进行了优化。我们的模型基于YOLOv8构建,集成了GSConv,这是一种结合了分组卷积和空间卷积的混合卷积模块,在保持检测精度的同时显著减少计算开销。我们还引入了具有单阶段聚合策略的跨阶段局部网络模块,有效减少结构冗余并增强特征表示。所提出的框架使用TensorRT进行优化,并在NVIDIA Jetson Orin NX平台上使用FP16量化进行部署,以确保在有限硬件条件下的实时性能。实验结果表明,Slim-Sugarcane的精度达到0.922,召回率为0.802,平均精度均值为0.852,推理延迟仅为60.1毫秒,GPU内存占用为1434 MB。与现有方法相比,所提出的方法具有更高的精度和计算效率,为精准农业和智能甘蔗种植提供了一个有前景的解决方案。