文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 YOLOv3 和传统计算机视觉方法的甘蔗茎节点识别与定位算法。

Identification and Localisation Algorithm for Sugarcane Stem Nodes by Combining YOLOv3 and Traditional Methods of Computer Vision.

机构信息

School of Mechanical Engineering, Jiangnan University, Wuxi 214000, China.

Agro-Machinery Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China.

出版信息

Sensors (Basel). 2022 Oct 28;22(21):8266. doi: 10.3390/s22218266.


DOI:10.3390/s22218266
PMID:36365970
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9654303/
Abstract

Sugarcane stem node identification is the core technology required for the intelligence and mechanization of the sugarcane industry. However, detecting stem nodes quickly and accurately is still a significant challenge. In this paper, in order to solve this problem, a new algorithm combining YOLOv3 and traditional methods of computer vision is proposed, which can improve the identification rate during automated cutting. First, the input image is preprocessed, during which affine transformation is used to correct the posture of the sugarcane and a rotation matrix is established to obtain the region of interest of the sugarcane. Then, a dataset is built to train the YOLOv3 network model and the position of the stem nodes is initially determined using the YOLOv3 model. Finally, the position of the stem nodes is further located accurately. In this step, a new gradient operator is proposed to extract the edge of the image after YOLOv3 recognition. Then, a local threshold determination method is proposed, which is used to binarize the image after edge extraction. Finally, a localization algorithm for stem nodes is designed to accurately determine the number and location of the stem nodes. The experimental results show that the precision rate, recall rate, and harmonic mean of the stem node recognition algorithm in this paper are 99.68%, 100%, and 99.84%, respectively. Compared to the YOLOv3 network, the precision rate and the harmonic mean are improved by 2.28% and 1.13%, respectively. Compared to other methods introduced in this paper, this algorithm has the highest recognition rate.

摘要

甘蔗茎节点识别是甘蔗产业智能化和机械化所必需的核心技术。然而,快速准确地检测茎节点仍然是一个重大挑战。在本文中,为了解决这个问题,提出了一种结合 YOLOv3 和计算机视觉传统方法的新算法,该算法可以提高自动化切割过程中的识别率。首先,对输入图像进行预处理,在此过程中使用仿射变换来校正甘蔗的姿态,并建立旋转矩阵以获取甘蔗的感兴趣区域。然后,构建一个数据集来训练 YOLOv3 网络模型,并使用 YOLOv3 模型初步确定茎节点的位置。最后,进一步精确定位茎节点的位置。在这一步骤中,提出了一种新的梯度算子,用于提取 YOLOv3 识别后的图像边缘。然后,提出了一种局部阈值确定方法,用于对边缘提取后的图像进行二值化。最后,设计了一个茎节点定位算法,以准确确定茎节点的数量和位置。实验结果表明,本文提出的茎节点识别算法的精度、召回率和调和平均值分别为 99.68%、100%和 99.84%。与 YOLOv3 网络相比,精度和调和平均值分别提高了 2.28%和 1.13%。与本文介绍的其他方法相比,该算法具有最高的识别率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/b42be36b9a42/sensors-22-08266-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/e454125882fa/sensors-22-08266-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/829f868853c0/sensors-22-08266-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/1cd700696c23/sensors-22-08266-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/4de971372bfd/sensors-22-08266-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/7465c6d38692/sensors-22-08266-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/3cb289aba72b/sensors-22-08266-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/9f9e5425730f/sensors-22-08266-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/ba47333bbb21/sensors-22-08266-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/56b25a79a443/sensors-22-08266-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/6cea21f74f0b/sensors-22-08266-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/f3e0a28c3d3e/sensors-22-08266-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/b42be36b9a42/sensors-22-08266-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/e454125882fa/sensors-22-08266-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/829f868853c0/sensors-22-08266-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/1cd700696c23/sensors-22-08266-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/4de971372bfd/sensors-22-08266-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/7465c6d38692/sensors-22-08266-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/3cb289aba72b/sensors-22-08266-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/9f9e5425730f/sensors-22-08266-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/ba47333bbb21/sensors-22-08266-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/56b25a79a443/sensors-22-08266-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/6cea21f74f0b/sensors-22-08266-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/f3e0a28c3d3e/sensors-22-08266-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d45/9654303/b42be36b9a42/sensors-22-08266-g012.jpg

相似文献

[1]
Identification and Localisation Algorithm for Sugarcane Stem Nodes by Combining YOLOv3 and Traditional Methods of Computer Vision.

Sensors (Basel). 2022-10-28

[2]
Sugarcane stem node detection and localization for cutting using deep learning.

Front Plant Sci. 2022-12-12

[3]
Sugarcane stem node identification algorithm based on improved YOLOv5.

PLoS One. 2023

[4]
A new automatic sugarcane seed cutting machine based on internet of things technology and RGB color sensor.

PLoS One. 2024

[5]
Traffic Sign Recognition Based on the YOLOv3 Algorithm.

Sensors (Basel). 2022-12-1

[6]
Detection of dental caries in oral photographs taken by mobile phones based on the YOLOv3 algorithm.

Ann Transl Med. 2021-11

[7]
Detection of microalgae objects based on the Improved YOLOv3 model.

Environ Sci Process Impacts. 2021-10-20

[8]
Construction and Application of YOLOv3-Based Diatom Identification Model of Scanning Electron Microscope Images.

Fa Yi Xue Za Zhi. 2022-2-25

[9]
Sugarcane-Seed-Cutting System Based on Machine Vision in Pre-Seed Mode.

Sensors (Basel). 2022-11-2

[10]
A lightweight YOLOv3 algorithm used for safety helmet detection.

Sci Rep. 2022-6-29

引用本文的文献

[1]
Slim-sugarcane: a lightweight and high-precision method for sugarcane node detection and edge deployment in natural environments.

Front Plant Sci. 2025-7-30

[2]
EdgeSugarcane: a lightweight high-precision method for real-time sugarcane node detection in edge computing environments.

Front Plant Sci. 2025-7-7

[3]
Advanced design and Engi-economical evaluation of an automatic sugarcane seed cutting machine based RGB color sensor.

PLoS One. 2024

[4]
A new automatic sugarcane seed cutting machine based on internet of things technology and RGB color sensor.

PLoS One. 2024

[5]
Design, construction and field testing of a manually feeding semiautomatic sugarcane dud chipper.

Sci Rep. 2024-3-4

[6]
Weed target detection at seedling stage in paddy fields based on YOLOX.

PLoS One. 2023

[7]
Integrated transcriptomic and proteomic analyses of two sugarcane (Saccharum officinarum Linn.) varieties differing in their lodging tolerance.

BMC Plant Biol. 2023-11-29

本文引用的文献

[1]
Applications of machine vision in pharmaceutical technology: A review.

Eur J Pharm Sci. 2021-4-1

[2]
Using Deep Learning for Image-Based Plant Disease Detection.

Front Plant Sci. 2016-9-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索