Wang Wenya, Wang Zihui, Ling Aixia, Zhang Chunyan, Lv Mei, Huang Lufen, Niu Yanlian
School of Pharmacy, Jining Medical University, Rizhao, China.
Front Pharmacol. 2025 Aug 6;16:1613679. doi: 10.3389/fphar.2025.1613679. eCollection 2025.
Sinomenine (SIN), a multi-target alkaloid extracted from , demonstrates significant immunomodulatory, anti-inflammatory, and osteoprotective properties in the treatment of rheumatoid arthritis (RA). It achieves these effects by modulating immune cells, such as macrophages and T cells, suppressing pro-inflammatory cytokines like tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and inhibiting synovial hyperplasia and bone erosion. Recent advancements in drug delivery systems (DDSs), including oral sustained-release formulations, transdermal microneedles, lipid-based carriers (such as transfersomes and ethosomes), and intra-articular thermosensitive hydrogels, have markedly improved its bioavailability, targeting precision, and therapeutic longevity. For example, reactive oxygen species-responsive microneedles and biomimetic nanocarriers facilitate spatiotemporal-controlled drug release, while hybrid exosome-liposome systems enhance synovial retention and minimize systemic toxicity. Although preclinical results are promising, challenges like incomplete clinical validation, limited exploration of combination therapies, and inadequate adaptation to RA's dynamic microenvironments persist. Future research should focus on developing intelligent DDSs with multi-stimuli responsiveness, leveraging omics for mechanistic insights, and creating patient-specific delivery strategies to enhance clinical application. This review highlights SIN's transformative potential in RA management and calls for interdisciplinary collaboration to improve its translational success.
青藤碱(SIN)是一种从[植物名称未给出]中提取的多靶点生物碱,在类风湿关节炎(RA)的治疗中具有显著的免疫调节、抗炎和骨保护特性。它通过调节免疫细胞(如巨噬细胞和T细胞)、抑制促炎细胞因子(如肿瘤坏死因子-α(TNF-α)和白细胞介素-6(IL-6))以及抑制滑膜增生和骨侵蚀来实现这些作用。药物递送系统(DDS)的最新进展,包括口服缓释制剂、透皮微针、脂质基载体(如传递体和醇质体)以及关节内热敏水凝胶,显著提高了其生物利用度、靶向精准度和治疗持久性。例如,活性氧响应性微针和仿生纳米载体有助于时空控制药物释放,而外泌体-脂质体混合系统增强了滑膜滞留并将全身毒性降至最低。尽管临床前结果很有前景,但诸如临床验证不完整、联合治疗探索有限以及对RA动态微环境适应不足等挑战仍然存在。未来的研究应专注于开发具有多刺激响应性的智能DDS,利用组学获得机制性见解,并制定针对患者的递送策略以增强临床应用。本综述强调了SIN在RA管理中的变革潜力,并呼吁跨学科合作以提高其转化成功率。