Suppr超能文献

严重急性呼吸综合征冠状病毒2型主要蛋白酶失调肝脏胰岛素信号传导和葡萄糖摄取:对新冠后糖尿病发生的影响。

SARS-CoV-2 Main Protease Dysregulates Hepatic Insulin Signaling and Glucose Uptake: Implications for Post-COVID-19 Diabetogenesis.

作者信息

Nhau Praise Tatenda, Gamede Mlindeli, Khathi Andile, Sibiya Ntethelelo

机构信息

Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa.

Human Physiology Department, University of Pretoria, Pretoria 0002, South Africa.

出版信息

Pathophysiology. 2025 Aug 4;32(3):39. doi: 10.3390/pathophysiology32030039.

Abstract

There is growing evidence suggesting that SARS-CoV-2 may contribute to metabolic dysfunction. SARS-CoV-2 infection is associated with systemic inflammation, oxidative stress, and metabolic dysregulation, all of which may impair liver function and promote glucose intolerance. This study investigated the role of SARS-CoV-2, specifically its Main Protease (M), in accelerating insulin resistance and metabolic dysfunction in HepG2 cells in vitro. HepG2 cells were treated with varying concentrations of M (2.5, 5, 10, 20, 40, 80, and 160 nmol/mL) for 24 h to assess cytotoxicity and glucose uptake. Based on initial findings, subsequent assays focused on higher concentrations (40, 80, and 160 nmol/mL). The effects of M on cell viability, protein kinase B (AKT) expression, matrix metallopeptidase-1 (MMP1), dipeptidyl peptidase 4 (DPP4), interleukin-6 (IL-6) expression, and lipid peroxidation were investigated. Our findings reveal that the SARS-CoV-2 M treatment led to a concentration-dependent reduction in glucose uptake in HepG2 cells. Additionally, the M treatment was associated with reduced insulin-stimulated AKT activation, particularly at higher concentrations. Inflammatory markers such as IL-6 were elevated in the extracellular medium, while DPP4 expression was decreased. However, extracellular soluble DPP4 (sDPP4) levels did not show a significant change. Despite these changes, cell viability remained relatively unaffected, suggesting that the HepG2 cells were able to maintain overall metabolic functions under M exposure. This study demonstrated the concentration-dependent impairment of hepatic glucose metabolism, insulin signaling, and inflammatory pathways in HepG2 cells acutely exposed to the SARS-CoV-2 M. These findings warrant further investigation to explore the long-term metabolic effects of SARS-CoV-2 and its proteases in the liver and to develop potential therapeutic approaches for post-viral metabolic complications.

摘要

越来越多的证据表明,严重急性呼吸综合征冠状病毒2(SARS-CoV-2)可能导致代谢功能障碍。SARS-CoV-2感染与全身炎症、氧化应激和代谢失调有关,所有这些都可能损害肝功能并促进葡萄糖不耐受。本研究调查了SARS-CoV-2,特别是其主要蛋白酶(M),在体外加速HepG2细胞胰岛素抵抗和代谢功能障碍中的作用。用不同浓度的M(2.5、5、10、20、40、80和160 nmol/mL)处理HepG2细胞24小时,以评估细胞毒性和葡萄糖摄取。基于初步研究结果,后续试验集中在较高浓度(40、80和160 nmol/mL)上。研究了M对细胞活力、蛋白激酶B(AKT)表达、基质金属肽酶-1(MMP1)、二肽基肽酶4(DPP4)、白细胞介素-6(IL-6)表达和脂质过氧化的影响。我们的研究结果表明,SARS-CoV-2 M处理导致HepG2细胞中葡萄糖摄取呈浓度依赖性降低。此外,M处理与胰岛素刺激的AKT激活减少有关,尤其是在较高浓度时。细胞外培养基中白细胞介素-6等炎症标志物升高,而DPP4表达降低。然而,细胞外可溶性DPP4(sDPP4)水平没有显著变化。尽管有这些变化,细胞活力仍然相对未受影响,这表明HepG2细胞在暴露于M的情况下能够维持整体代谢功能。本研究证明了急性暴露于SARS-CoV-2 M的HepG2细胞中肝脏葡萄糖代谢、胰岛素信号传导和炎症途径的浓度依赖性损伤。这些发现值得进一步研究,以探索SARS-CoV-2及其蛋白酶在肝脏中的长期代谢影响,并开发针对病毒后代谢并发症的潜在治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703c/12372133/3f22df92ed7c/pathophysiology-32-00039-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验