Filippi Luca, Bianconi Francesco, Ferrari Cristina, Linguanti Flavia, Battisti Claudia, Urbano Nicoletta, Minestrini Matteo, Messina Salvatore Gerardo, Buci Lisa, Baldoncini Alfonso, Rubini Giuseppe, Schillaci Orazio, Palumbo Barbara
Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier, 1, Rome, 00133, Italy.
Department of Engineering, Università degli Studi di Perugia, Perugia, Italy.
Eur J Nucl Med Mol Imaging. 2025 Aug 22. doi: 10.1007/s00259-025-07508-4.
To compare PET-derived metrics between digital and analogue PET/CT in hyperparathyroidism, and to assess whether machine learning (ML) applied to quantitative PET parameters can distinguish parathyroid adenoma (PA) from hyperplasia (PH).
From an initial multi-centre cohort of 179 patients, 86 were included, comprising 89 PET-positive lesions confirmed histologically (74 PA, 15 PH). Quantitative PET parameters-maximum standardised uptake value (SUVmax), metabolic tumour volume (MTV), target-to-background ratio (TBR), and maximum diameter-along with serum PTH and calcium levels, were compared between digital and analogue PET scanners using the Mann-Whitney U test. Receiver operating characteristic (ROC) analysis identified optimal threshold values. ML models (LASSO, decision tree, Gaussian naïve Bayes) were trained on harmonised quantitative features to distinguish PA from PH.
Digital PET detected significantly smaller lesions than analogue PET, in both metabolic volume (1.32 ± 1.39 vs. 2.36 ± 2.01 cc; p < 0.001) and maximum diameter (8.35 ± 4.32 vs. 11.87 ± 5.29 mm; p < 0.001). PA lesions showed significantly higher SUVmax and TBR compared to PH (SUVmax: 8.58 ± 3.70 vs. 5.27 ± 2.34; TBR: 14.67 ± 6.99 vs. 8.82 ± 5.90; both p < 0.001). The optimal thresholds for identifying PA were SUVmax > 5.89 and TBR > 11.5. The best ML model (LASSO) achieved an AUC of 0.811, with 79.7% accuracy and balanced sensitivity and specificity.
Digital PET outperforms analogue system in detecting small parathyroid lesions. Additionally, ML analysis of PET-derived metrics and PTH may support non-invasive distinction between adenoma and hyperplasia.
比较数字式和模拟式PET/CT在甲状旁腺功能亢进症中基于PET得出的指标,并评估应用于PET定量参数的机器学习(ML)能否区分甲状旁腺腺瘤(PA)和增生(PH)。
从最初179例患者的多中心队列中纳入86例,包括89个经组织学证实的PET阳性病变(74例PA,15例PH)。使用Mann-Whitney U检验比较数字式和模拟式PET扫描仪之间的PET定量参数——最大标准化摄取值(SUVmax)、代谢肿瘤体积(MTV)、靶本比(TBR)和最大直径,以及血清甲状旁腺激素(PTH)和钙水平。受试者操作特征(ROC)分析确定最佳阈值。基于协调后的定量特征训练ML模型(套索回归、决策树、高斯朴素贝叶斯)以区分PA和PH。
在代谢体积(1.32±1.39 vs. 2.36±2.01 cc;p<0.001)和最大直径(8.35±4.32 vs. 11.87±5.29 mm;p<0.001)方面,数字式PET检测到的病变均明显小于模拟式PET。与PH相比,PA病变的SUVmax和TBR显著更高(SUVmax:8.58±3.70 vs. 5.27±2.34;TBR:14.67±6.99 vs. 8.82±5.90;均p<0.001)。识别PA的最佳阈值为SUVmax>5.89和TBR>11.5。最佳ML模型(套索回归)的曲线下面积(AUC)为0.811,准确率为79.7%,敏感性和特异性平衡。
数字式PET在检测小甲状旁腺病变方面优于模拟系统。此外,对PET衍生指标和PTH进行ML分析可能有助于腺瘤和增生的无创鉴别。