Suppr超能文献

基于深度学习的医院蓝色代码事件风险及住院时间的预警系统:回顾性真实世界实施研究

Deep Learning-Based Early Warning Systems in Hospitalized Patients at Risk of Code Blue Events and Length of Stay: Retrospective Real-World Implementation Study.

作者信息

Kim Ji-Hyun, Cho Eun Young, Choi Yuhyun, Won Joo-Yun, Cheon Se Hee, Kim Young Ae, Lee Ki-Byung, Kim Kwang Joon, Kim Ho Gwan, Sim Taeyong

机构信息

AITRICS Corp, 218 Teheran-ro, Gangnam-gu, Seoul, 06221, Republic of Korea, 82 025695507, 82 025695508.

Department of Medical Management, Presbyterian Medical Center, Jeonju, Republic of Korea.

出版信息

JMIR Med Inform. 2025 Aug 22;13:e72232. doi: 10.2196/72232.

Abstract

BACKGROUND

In hospitals, Code Blue is an emergency that refers to a patient requiring immediate resuscitation. Over 85% of patients with cardiopulmonary arrest exhibit abnormal vital sign trends prior to the event. Continuous monitoring and accurate interpretation of clinical data through artificial intelligence (AI) models can contribute to preventing critical events.

OBJECTIVE

This study aims to evaluate changes in clinical outcomes following the use of VitalCare (Major Adverse Event Score and Mortality Score), which is an AI-based early warning system, and to validate the performance of the algorithm.

METHODS

A retrospective analysis was conducted by extracting electronic health record data, using a total of 30,785 inpatient cases from general wards and intensive care units. A comparative analysis was performed by setting a 3-month period before and after the system implementation. For clinical evaluation, we measured the incidence rates of Code Blue and adverse events, the proportion of prolonged hospitalization, and the frequency of early interventions. The area under the receiver operating characteristic curve (AUROC) was calculated to assess the performance of the algorithm.

RESULTS

This study demonstrated that, following the implementation of VitalCare, there was a 24.97% reduction in major events such as Code Blue (P=.004) and the proportion of prolonged hospitalization in general wards (P<.05), along with a significant increase in the rate of early interventions. The model performance exhibited superior outcomes compared with traditional scoring systems, with a Major Adverse Event Score AUROC of 0.865 (95% CI 0.857-0.873) and Mortality Score AUROC of 0.937 (95% CI 0.931-0.944).

CONCLUSIONS

A well-developed AI-based model that provides high predictive power can contribute to the prevention of major in-hospital events by providing early predictive information to clinicians. Additionally, it plays a crucial role in effectively addressing unmet needs and challenges in terms of human resources and practical procedures.

摘要

背景

在医院中,“蓝色代码”是指患者需要立即进行复苏的紧急情况。超过85%的心脏骤停患者在事件发生前表现出生命体征异常趋势。通过人工智能(AI)模型对临床数据进行持续监测和准确解读有助于预防危急事件。

目的

本研究旨在评估使用基于AI的早期预警系统VitalCare(重大不良事件评分和死亡率评分)后临床结局的变化,并验证该算法的性能。

方法

通过提取电子健康记录数据进行回顾性分析,共纳入来自普通病房和重症监护病房的30785例住院病例。通过设定系统实施前后3个月的时间段进行对比分析。对于临床评估,我们测量了“蓝色代码”和不良事件的发生率、延长住院时间的比例以及早期干预的频率。计算受试者操作特征曲线下面积(AUROC)以评估算法的性能。

结果

本研究表明,在实施VitalCare后,“蓝色代码”等重大事件减少了24.97%(P = 0.004),普通病房延长住院时间的比例降低(P < 0.05),同时早期干预率显著提高。与传统评分系统相比,该模型性能表现更优,重大不良事件评分AUROC为0.865(95%CI 0.857 - 0.873),死亡率评分AUROC为0.937(95%CI 0.931 - 0.944)。

结论

一个开发完善、具有高预测能力的基于AI的模型可以通过向临床医生提供早期预测信息,有助于预防医院内的重大事件。此外,它在有效解决人力资源和实际操作方面未满足的需求和挑战方面发挥着关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/553d/12373407/c8fc3db068e7/medinform-v13-e72232-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验