Meena Madhu Bai, Meena Mahendra, Saini Sagar, Gupta N K, Godika Shailesh, Pilania Shalini, Sharma Rachna, Saini Akash
Department of Plant Pathology, Rajasthan College of Agriculture, MPUAT, Udaipur, Rajasthan, India.
Department of Horticulture, SKN College of Agriculture, Sri Karan Narendra Agriculture University, Jobner, Rajasthan 303 329, India.
Int J Biol Macromol. 2025 Sep;322(Pt 4):146993. doi: 10.1016/j.ijbiomac.2025.146993. Epub 2025 Aug 20.
Management approaches for fungal diseases in Papaya primarily depend on inorganic chemical-based fungicides, which may pose threats to both human health and the environment. Nano based-fungicides offer innovative solutions with significant potential to transform the plant protection sector and enhance overall quality of life. This study examined the antifungal efficacy of histidine loaded chitosan nanoparticles (His-CS NPs) against Fusarium solani through both in vitro and pot experiments. Additionally, the His-CS NPs were characterized using sophisticated techniques. Dynamic light scattering methods indicated that the NPs had a uniform size of 314.4 nm, a low polydispersity index (PDI) of 0.218, viscosity (1.43 Cps), higher zeta potential (11.2 mV), nanoparticle concentration/mL (3.53 × 10), conductivity (0.046 mS/cm), encapsulation efficiency (53 %), loading capacity (24 %) and yield (32.17 %). In vitro assays revealed mycelial growth inhibition of 74.27 ± 2.3 % (p < 0.05) at 0.03 % His-CS NPs. Pot experiments showed significant reduction in disease severity to 6.3 ± 1.5 % compared to 62.0 ± 3.4 % in the untreated control (p < 0.001). His-CS NP treatment also improved plant height (22.3 ± 0.8 cm), leaf area (154.8 ± 4.5 cm), and stem diameter (10.5 ± 0.3 mm), along with increased antioxidant enzyme activity (SOD, POD, CAT, PPO), reduced ROS levels (HO, O), and elevated chlorophyll content (3.78 ± 0.11 mg/g FW, p < 0.01). The interaction of chitosan (CS) with His-CS nanoparticles (NPs) was demonstrated through fourier-transform infrared (FTIR) spectroscopy; concurrently, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) highlighted the porous nature of the structure. The evaluation of the disease through in vitro and pot experiments revealed that His-CS NPs exhibited significant antifungal activity, effectively inhibiting mycelia growth, diminishing disease severity, and attaining a greater percentage efficacy of disease control (PEDC). Application of His-CS NPs to Papaya potted plants via seed treatment and foliar spray positively affected growth parameters, the activity of antioxidant-defense enzymes, levels of reactive oxygen species (ROS), and chlorophyll content. Hence, the antifungal properties of His-CS NPs open new avenues for creating biologically derived antifungal prototype, providing a sustainable and renewable alternative to conventional botanical based strategies.
番木瓜真菌病害的管理方法主要依赖于基于无机化学的杀菌剂,这可能对人类健康和环境都构成威胁。基于纳米的杀菌剂提供了创新的解决方案,具有变革植物保护领域和提高整体生活质量的巨大潜力。本研究通过体外和盆栽实验考察了负载组氨酸的壳聚糖纳米颗粒(His-CS NPs)对茄形镰刀菌的抗真菌效果。此外,还使用先进技术对His-CS NPs进行了表征。动态光散射方法表明,这些纳米颗粒尺寸均匀,为314.4纳米,多分散指数(PDI)低,为0.218,粘度为1.43厘泊,zeta电位较高,为11.2毫伏,纳米颗粒浓度/毫升为3.53×10,电导率为0.046毫西门子/厘米,包封率为53%,负载量为24%,产率为32.17%。体外试验显示,在0.03%的His-CS NPs浓度下,菌丝体生长抑制率为74.27±2.3%(p<0.05)。盆栽实验表明,与未处理对照的62.0±3.4%相比,病害严重程度显著降低至6.3±1.5%(p<0.001)。His-CS NP处理还提高了株高(22.3±0.8厘米)、叶面积(154.8±4.5平方厘米)和茎直径(10.5±0.3毫米),同时增加了抗氧化酶活性(超氧化物歧化酶、过氧化物酶、过氧化氢酶、多酚氧化酶),降低了活性氧水平(过氧化氢、超氧阴离子),并提高了叶绿素含量(3.78±0.11毫克/克鲜重,p<0.01)。通过傅里叶变换红外(FTIR)光谱证明了壳聚糖(CS)与His-CS纳米颗粒(NPs)的相互作用;同时,扫描电子显微镜(SEM)和透射电子显微镜(TEM)突出了结构的多孔性质。通过体外和盆栽实验对病害进行评估表明,His-CS NPs表现出显著的抗真菌活性,有效抑制菌丝体生长,降低病害严重程度,并获得更高的病害防治百分率(PEDC)。通过种子处理和叶面喷施将His-CS NPs应用于番木瓜盆栽植物对生长参数、抗氧化防御酶活性、活性氧(ROS)水平和叶绿素含量产生了积极影响。因此,His-CS NPs的抗真菌特性为创建生物源抗真菌原型开辟了新途径,为传统植物源策略提供了一种可持续和可再生的替代方案。