Alikarami Marzieh, Saremi Hossein, Darvishnia Mostafa
Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
Department of Plant Protection, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
World J Microbiol Biotechnol. 2025 Aug 14;41(8):312. doi: 10.1007/s11274-025-04531-3.
This study explores the antifungal potential of zinc oxide (ZnO) and molybdenum disulfide (MoS₂) nanoparticles (NPs) against Fusarium oxysporum and Fusarium graminearum, two major fungal pathogens threatening wheat production and grass pastures. Three sizes of ZnO NPs (30 nm, 200 nm, and 20 μm) and MoS₂ NPs (90 nm) were synthesized and characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and Brunauer-Emmett-Teller (BET) analyses. Antifungal assays revealed that smaller ZnO NPs (30 nm) exhibited superior antifungal activity due to their high surface-to-volume ratio, achieving up to 79% inhibition of F. oxysporum, while MoS₂ NPs effectively inhibited F. graminearum growth by inducing oxidative stress and cellular damage, with a maximum inhibition rate of 83% (p < 0.05). The combination of ZnO and MoS₂ NPs demonstrated synergistic antifungal effects, as confirmed by light microscopy, which showed that ZnO NPs disrupted fungal cell wall integrity while MoS₂ NPs triggered oxidative stress and intracellular vacuolization. Greenhouse trials further validated the effectiveness of MoS₂ NPs in reducing Fusarium head blight (FHB) severity in wheat, underscoring their potential for sustainable wheat protection, with disease severity reduced by up to 35.8%. These findings highlight ZnO and MoS₂ NPs as promising eco-friendly alternatives to conventional fungicides, though further research is needed to optimize field applications, assess environmental impact, and integrate these NPs into comprehensive plant disease management strategies.
本研究探索了氧化锌(ZnO)和二硫化钼(MoS₂)纳米颗粒(NPs)对尖孢镰刀菌和禾谷镰刀菌的抗真菌潜力,这两种主要真菌病原体威胁着小麦生产和草地牧场。合成了三种尺寸的ZnO纳米颗粒(30纳米、200纳米和20微米)和MoS₂纳米颗粒(90纳米),并使用原子力显微镜(AFM)、扫描电子显微镜(SEM)、动态光散射(DLS)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、拉曼光谱、紫外可见(UV-Vis)光谱和布鲁诺尔-埃米特-特勒(BET)分析对其进行了表征。抗真菌试验表明,较小的ZnO纳米颗粒(30纳米)因其高表面积与体积比而表现出优异的抗真菌活性,对尖孢镰刀菌的抑制率高达79%,而MoS₂纳米颗粒通过诱导氧化应激和细胞损伤有效抑制了禾谷镰刀菌的生长,最大抑制率为83%(p < 0.05)。ZnO和MoS₂纳米颗粒的组合表现出协同抗真菌作用,光学显微镜证实,ZnO纳米颗粒破坏了真菌细胞壁的完整性,而MoS₂纳米颗粒引发了氧化应激和细胞内空泡化。温室试验进一步验证了MoS₂纳米颗粒在降低小麦赤霉病(FHB)严重程度方面的有效性,突出了其在可持续小麦保护方面的潜力,病害严重程度降低了35.8%。这些发现突出了ZnO和MoS₂纳米颗粒作为传统杀菌剂有前景的环保替代品,不过还需要进一步研究来优化田间应用、评估环境影响,并将这些纳米颗粒纳入全面的植物病害管理策略。