Suppr超能文献

揭示帕金森震颤与特发性震颤之间的形态学脑网络差异:一种用于临床鉴别的人工智能方法。

Unraveling morphological brain network disparities Parkinsonian tremor from essential tremor: an artificial intelligence approach for clinical differentiation.

作者信息

Zhang Moxuan, Zhou Siyu, Wang Huizhi, Yang Pengda, Ding Jinli, Wang Xiaobo, Chen Xuzhu, Zhang Chaonan, Wang Anni, Gao Yuan, Liu Qiang, Li Yueping, Xu Tianqi, Ma Zeyu, Jiang Yin, Shi Lin, Han Chunlei, Ji Yuchen, Cai Guoen, Feng Tao, Zhang Jianguo, Meng Fangang

机构信息

Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.

Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

出版信息

NPJ Parkinsons Dis. 2025 Aug 22;11(1):253. doi: 10.1038/s41531-025-01107-8.

Abstract

Tremor-dominant Parkinson's disease (TD) and Essential Tremor (ET) are the two most common types of tremors, posing huge challenges in diagnosis. This study was to investigate the pathogenesis of tremors using brain morphology and employ artificial intelligence techniques for distinguishing them. The cortical thickness differences in TD were primarily centered on the right precuneus, while in ET were mainly observed in the right medial orbitofrontal cortex. Subcortical analysis revealed that TD patients primarily exhibited an increase in pallidum, whereas ET patients showed a significant reduction in thalamus. Causal network analysis indicated that in TD, the right temporal lobe exhibited the highest out-degree, and gradually extended to motor control regions. In contrast, ET primarily exhibits initial changes in the prefrontal and occipital visual cortices. Finally, by incorporating these specific characteristics, we developed a machine learning model capable of accurately distinguishing between different tremor types, providing valuable insights for clinical practice.

摘要

震颤为主型帕金森病(TD)和特发性震颤(ET)是两种最常见的震颤类型,在诊断方面带来了巨大挑战。本研究旨在利用脑形态学研究震颤的发病机制,并采用人工智能技术对它们进行区分。TD患者的皮质厚度差异主要集中在右侧楔前叶,而ET患者主要在右侧眶额内侧皮质观察到差异。皮质下分析显示,TD患者主要表现为苍白球增大,而ET患者丘脑显著缩小。因果网络分析表明,在TD中,右侧颞叶的出度最高,并逐渐扩展到运动控制区域。相比之下,ET主要在前额叶和枕叶视觉皮质表现出初始变化。最后,通过整合这些特定特征,我们开发了一种能够准确区分不同震颤类型的机器学习模型,为临床实践提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验