Mahmoudi Omid, Shiri Yousef
Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, P.O. Box: 36199-95161, Shahrood, Iran.
Sci Rep. 2025 Aug 22;15(1):30880. doi: 10.1038/s41598-025-16720-z.
Sand production poses a significant challenge because of erosion caused by solid particles in turbulent flows, particularly in elbows and fittings. This research explores the influence of solid particle geometry, size, intensity, elbow radius of curvature, and fluid velocity on erosion dynamics in elbows under vertical flow conditions via the CFD-DPM (discrete phase model) coupling method. The novelty of this study lies in its integrative approach, which involves simultaneously analyzing multiple interrelated parameters and validating predictions with detailed experimental data. This provides more realistic insights into erosion behavior and more practical guidelines for minimizing wear in industrial pipelines. The numerical results were verified through experimental investigation. The findings revealed that increasing the number of particles increased the erosion rate up to a certain point, after which erosion did not change. This can be attributed to surface saturation, particle shielding, and energy dissipation mechanisms. Larger particles cause more erosion, whereas smaller, rounded particles cause less erosion. Furthermore, high flow rates and lower elbow radii of curvature induce higher impact pressures, especially on outer elbow surfaces, intensifying erosion for larger particles. Therefore, this study identifies the combined effects of particle and flow parameters that critically influence elbow erosion, highlighting effective control strategies to prolong equipment life. Future work should focus on developing mitigation strategies and exploring alternative materials to reduce erosion under turbulent flow conditions.
由于湍流中固体颗粒造成的侵蚀,特别是在弯头和管件中,出砂带来了重大挑战。本研究通过CFD-DPM(离散相模型)耦合方法,探讨了垂直流动条件下固体颗粒几何形状、尺寸、强度、弯头曲率半径和流体速度对弯头侵蚀动力学的影响。本研究的新颖之处在于其综合方法,即同时分析多个相互关联的参数并用详细的实验数据验证预测结果。这为侵蚀行为提供了更现实的见解,并为最大限度减少工业管道磨损提供了更实用的指导方针。数值结果通过实验研究得到了验证。研究结果表明,颗粒数量增加会使侵蚀速率在达到某一点之前上升,之后侵蚀不再变化。这可归因于表面饱和、颗粒屏蔽和能量耗散机制。较大颗粒造成的侵蚀更多,而较小的圆形颗粒造成的侵蚀较少。此外,高流速和较低的弯头曲率半径会产生更高的冲击压力,尤其是在弯头外表面,这会加剧较大颗粒的侵蚀。因此,本研究确定了对弯头侵蚀有关键影响的颗粒和流动参数的综合作用,突出了延长设备寿命的有效控制策略。未来的工作应集中在制定缓解策略以及探索替代材料,以减少湍流条件下的侵蚀。