Suppr超能文献

疏水性微/纳米结构钛表面的高速冲蚀行为

High-Speed Erosion Behavior of Hydrophobic Micro/Nanostructured Titanium Surfaces.

作者信息

Chen Yong, Zhang Jiguo

机构信息

School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Nanomaterials (Basel). 2022 Mar 7;12(5):880. doi: 10.3390/nano12050880.

Abstract

Ice accretion on aircrafts or their engines can cause serious problems and even accidents. Traditional anti-icing and de-icing systems reduce engine efficiency, which can be improved by the use of hydrophobic/icephobic coatings or surfaces that reduce the amount of bleed air or electric power needed. These hydrophobic/icephobic coatings or surfaces are eroded by high-speed air flow, water droplets, ice crystals, sand, and volcanic ash, resulting in the degradation, material loss, or deterioration of the coating's waterproof and anti-icing properties. Thus, the durability of hydrophobic micro/nanostructured surfaces is a major concern in aircraft applications. However, the mechanism responsible for material loss in hydrophobic micro/nanostructured surfaces resulting from high-speed erosion remains unclear. In this paper, hydrophobic titanium alloy surfaces with cubic pit arrays are fabricated by photoetching and tested using a high-speed sand erosion rig. Under the same impact conditions, the erosion rates of the micro/nanostructured titanium surfaces were similar to those of smooth titanium alloy, implying that the hydrophobic surface fabricated on the bulk material had erosion-resistant capabilities. The material loss mechanisms of the micro/nanostructures under different impact angles were compared, providing useful information for the future optimization of micro/nanostructures with the goal of improved erosion resistance.

摘要

飞机及其发动机上的结冰会导致严重问题甚至事故。传统的防冰和除冰系统会降低发动机效率,而使用疏水性/憎冰性涂层或表面可减少所需的引气或电力,从而提高发动机效率。这些疏水性/憎冰性涂层或表面会受到高速气流、水滴、冰晶、沙子和火山灰的侵蚀,导致涂层的防水和防冰性能下降、材料损失或劣化。因此,疏水性微/纳米结构表面的耐久性是飞机应用中的一个主要问题。然而,高速侵蚀导致疏水性微/纳米结构表面材料损失的机制仍不清楚。在本文中,通过光刻法制备了具有立方坑阵列的疏水性钛合金表面,并使用高速砂蚀试验台进行了测试。在相同的冲击条件下,微/纳米结构钛表面的侵蚀速率与光滑钛合金的侵蚀速率相似,这意味着在块状材料上制备的疏水表面具有抗侵蚀能力。比较了不同冲击角度下微/纳米结构的材料损失机制,为未来优化微/纳米结构以提高抗侵蚀能力提供了有用信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b634/8912732/43c90b306fc2/nanomaterials-12-00880-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验