文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

CoO@mSiO纳米复合材料负载钯/离子液体作为一种高效且可磁回收的纳米催化剂。

CoO@mSiO nanocomposite supported Pd/ionic liquid as an efficient and magnetically recoverable nanocatalyst.

作者信息

Ardeshirfard Hakimeh, Elhamifar Dawood, Shaker Masoumeh

机构信息

Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran.

出版信息

Sci Rep. 2025 Aug 24;15(1):31077. doi: 10.1038/s41598-025-16962-x.


DOI:10.1038/s41598-025-16962-x
PMID:40849580
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12375050/
Abstract

In this work, a novel core-shell structured magnetic CoO@mSiO nanocomposite supported ionic liquid/palladium (CoO@mSiO/IL-Pd) is synthesized and its structure is characterized by using PXRD, EDX, FT-IR, SEM, TEM, TGA and VSM. This magnetic material was prepared through coating of mesoporous silica shell on magnetic cobalt oxide nanoparticles followed by chemical immobilization of ionic liquid/Pd complex. The CoO@mSiO/IL-Pd nanocomposite was used as an efficient and powerful catalyst for the reduction of nitrobenzenes. The excellent yield of the products, short reaction time and easy catalyst recoverability with no significant decrease in activity showed the high efficiency and stability of the designed nanocomposite under applied conditions.

摘要

在本工作中,合成了一种新型的核壳结构磁性CoO@mSiO纳米复合材料负载离子液体/钯(CoO@mSiO/IL-Pd),并通过PXRD、EDX、FT-IR、SEM、TEM、TGA和VSM对其结构进行了表征。这种磁性材料是通过在磁性氧化钴纳米颗粒上包覆介孔二氧化硅壳层,然后化学固定离子液体/Pd络合物制备而成。CoO@mSiO/IL-Pd纳米复合材料被用作还原硝基苯的高效且强大的催化剂。产物的优异产率、较短的反应时间以及催化剂易于回收且活性无显著降低,表明了所设计的纳米复合材料在应用条件下具有高效性和稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/31a43c93a4c2/41598_2025_16962_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/6f8c0540559e/41598_2025_16962_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/2800c970371c/41598_2025_16962_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/508ff2e97dd3/41598_2025_16962_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/1b59493a61e0/41598_2025_16962_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/5d8deb4bb410/41598_2025_16962_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/103b886c529d/41598_2025_16962_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/2c21d0cb4e45/41598_2025_16962_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/c1aea9ceee71/41598_2025_16962_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/3e7e456dc9c5/41598_2025_16962_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/4fd15ccdd123/41598_2025_16962_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/31a43c93a4c2/41598_2025_16962_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/6f8c0540559e/41598_2025_16962_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/2800c970371c/41598_2025_16962_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/508ff2e97dd3/41598_2025_16962_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/1b59493a61e0/41598_2025_16962_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/5d8deb4bb410/41598_2025_16962_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/103b886c529d/41598_2025_16962_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/2c21d0cb4e45/41598_2025_16962_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/c1aea9ceee71/41598_2025_16962_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/3e7e456dc9c5/41598_2025_16962_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/4fd15ccdd123/41598_2025_16962_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2f/12375050/31a43c93a4c2/41598_2025_16962_Fig11_HTML.jpg

相似文献

[1]
CoO@mSiO nanocomposite supported Pd/ionic liquid as an efficient and magnetically recoverable nanocatalyst.

Sci Rep. 2025-8-24

[2]
Magnetic resorcinol-formaldehyde supported-DABCO as an effective and recyclable nanocatalyst.

Sci Rep. 2025-7-2

[3]
Magnetic yolk-shell structured periodic mesoporous organosilica supported palladium as a powerful and highly recoverable nanocatalyst for the reduction of nitrobenzenes.

Sci Rep. 2024-7-15

[4]
Magnetic ethylene-based periodic mesoporous organosilica supported palladium: An efficient and recoverable nanocatalyst for Suzuki reaction.

Front Chem. 2023-2-2

[5]
Magnetic cobalt oxide supported organosilica-sulfonic acid as a powerful nanocatalyst for the synthesis of tetrahydrobenzo[a]xanthen-11-ones.

Sci Rep. 2023-8-29

[6]
Synergistic effect of CoO/CdAlO nanocomposite for photocatalytic decontamination of organic dyes under visible light irradiation.

Sci Rep. 2025-7-2

[7]
A novel Pd complex coated on TiFeO magnetic nanoparticles as an efficient and recoverable catalyst for the synthesis of 5-substituted 1H-tetrazoles.

Sci Rep. 2025-7-16

[8]
Pd-containing magnetic periodic mesoporous organosilica nanocomposite as an efficient and highly recoverable catalyst.

Sci Rep. 2022-5-13

[9]
Copper(ii) complex-decorated ZrFeO nanoparticles as a recyclable magnetic nanocatalyst for synthesis of N-containing heterocycles.

Nanoscale Adv. 2025-5-12

[10]
Pd(0)-Sb@A@SiO@NiFeO yolk-shell nanostructures as an effective and reusable nanocatalyst for the synthesis of symmetrical sulfides and unsymmetrical ethers.

Sci Rep. 2025-7-21

本文引用的文献

[1]
Magnetic cobalt oxide supported organosilica-sulfonic acid as a powerful nanocatalyst for the synthesis of tetrahydrobenzo[a]xanthen-11-ones.

Sci Rep. 2023-8-29

[2]
Ionic Liquids as Tools to Incorporate Pharmaceutical Ingredients into Biopolymer-Based Drug Delivery Systems.

Pharmaceuticals (Basel). 2023-2-11

[3]
Role and Recent Advancements of Ionic Liquids in Drug Delivery Systems.

Pharmaceutics. 2023-2-20

[4]
Pd-Based Metallenes for Fuel Cell Reactions.

Chem Rec. 2023-2

[5]
Rice husk-SiO supported bimetallic Fe-Ni nanoparticles: as a new, powerful magnetic nanocomposite for the aqueous reduction of nitro compounds to amines.

RSC Adv. 2020-9-10

[6]
Efficient reduction of nitro compounds and domino preparation of 1-substituted-1-1,2,3,4-tetrazoles by Pd(ii)-polysalophen coated magnetite NPs as a robust versatile nanocomposite.

RSC Adv. 2021-3-30

[7]
Ylide-Substituted Phosphines: A Platform of Strong Donor Ligands for Gold Catalysis and Palladium-Catalyzed Coupling Reactions.

Acc Chem Res. 2022-3-1

[8]
Microbial synthesis of efficient palladium electrocatalyst with high loadings for oxygen reduction reaction in acidic medium.

J Colloid Interface Sci. 2022-4

[9]
Facts and Figures on Materials Science and Nanotechnology Progress and Investment.

ACS Nano. 2021-10-26

[10]
Unveiling the exceptional synergism-induced design of Co-Mg-Al layered triple hydroxides (LTHs) for boosting catalytic activity toward the green synthesis of indol-3-yl derivatives under mild conditions.

J Colloid Interface Sci. 2021-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索