Markowicz Krzysztof M, Chiliński Michał T, Panfil Wawrzyniec, Nurowska Katarzyna, Moczulski Wojciech, Makuch Przemysław, Acedański Szymon, Florczyk Grzegorz M, Kozuba Jarosław
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland.
Faculty of Biology, University of Warsaw, Warsaw, Poland.
Environ Sci Pollut Res Int. 2025 Jul;32(34):20695-20713. doi: 10.1007/s11356-025-36887-2. Epub 2025 Aug 23.
This study aims to highlight the benefits of unmanned aerial vehicle (UAV) system in atmospheric aerosol research, particularly for obtaining information on the vertical variability of aerosol single-scattering properties in the lower troposphere. The results discussed in this paper were collected during the spring 2024 campaign at Nadarzyce Airport (Northwestern Poland). The UAV was equipped with miniaturized instruments (a low-cost SPS30 aerosol counter and an RS41 radiosonde) to measure aerosol single-scattering properties and atmospheric thermodynamic parameters. Vertical UAV profiles, lidar observations, and ground-based in-situ measurements were collected during a mineral dust event and under background conditions. Dust particles were detected between 1.5 and 3.0 km, where the effective radius and scattering Ångström exponent (SAE) remained almost constant, at approximately 0.4 µm and -0.2, respectively, based on the SPS30 sensor. The aerosol scattering coefficient (ASC) in the dust layer fluctuated between 40 and 100 Mm⁻ (at 525 nm), showing similar variability to the aerosol extinction coefficient (AEC) retrieved from lidar observations. The estimated scattering optical depth of the dust layer was 0.109 ± 0.018 (at 525 nm). In contrast, non-dust particles in the planetary boundary layer (PBL) exhibited a significantly lower effective radius (approximately 0.10 µm) and higher SAE (1.8-1.9). This methodology can detect aerosols during long-range transport and extend lidar signal measurements to the ground level.
本研究旨在突出无人机系统在大气气溶胶研究中的益处,特别是在获取对流层低层气溶胶单次散射特性的垂直变化信息方面。本文所讨论的结果是在2024年春季于波兰西北部的纳达日采机场开展的活动期间收集的。该无人机配备了小型化仪器(一台低成本的SPS30气溶胶计数器和一台RS41探空仪),用于测量气溶胶单次散射特性和大气热力学参数。在一次沙尘事件期间以及背景条件下,收集了无人机垂直剖面、激光雷达观测数据和地面原位测量数据。基于SPS30传感器,在1.5至3.0千米之间检测到沙尘颗粒,其中有效半径和散射埃斯特朗指数(SAE)几乎保持恒定,分别约为0.4微米和 -0.2。沙尘层中的气溶胶散射系数(ASC)在40至100 Mm⁻(在525纳米处)之间波动,与从激光雷达观测反演得到的气溶胶消光系数(AEC)呈现出相似的变化。沙尘层的估计散射光学厚度为0.109±0.018(在525纳米处)。相比之下,行星边界层(PBL)中的非沙尘颗粒有效半径显著更低(约0.10微米),SAE更高(1.8 - 1.9)。这种方法能够在长距离传输过程中检测气溶胶,并将激光雷达信号测量扩展到地面高度。