Kolgotin Alexei, Müller Detlef, Goloub Philippe, Hu Qiaoyun, Podvin Thierry, Wang Xuan
J Opt Soc Am A Opt Image Sci Vis. 2025 Feb 1;42(2):233-253. doi: 10.1364/JOSAA.537287.
We developed a new methodology for the improved identification of particle microphysical parameters (PMPs) from multiwavelength lidar measurements. The underlying problem is underdetermined and relates to the class of ill-posed problems. In this study, we apply our new methodology to lidar measurements. We investigate how results obtained for typical aerosol mixtures (AMs) in the atmosphere can be improved if information about aerosol types and the number of aerosol types in such an AM is available. We have developed a methodology of Aerosol Typing from Linear estimations for the Analytical Separation (ATLAS) of complex aerosol mixtures in the first part of our study. ATLAS allows us to decompose a complex AM into individual aerosol types in terms of optical data measured by lidar. Optical data derived for individual aerosol types are then separately considered and inverted into PMPs with our automated unsupervised data-inversion methodology TiARA (Tikhonov Advanced Regularization Algorithm). We apply our new two-stage (ATLAS-TiARA) synergetic methodology to three lidar-measurement cases corresponding to two-, three-, and four-component AMs. The measurements we use for this study were carried out in the frameworks of the ORACLES-2016 and SHADOW field campaigns and lidar observations at the University of Lille (France), respectively. Results of the new methodology agree with results obtained with data collected by instruments during the ORACLES-2016 campaign. Deviations of number concentration and single-scattering albedo at 532 nm retrieved with the new methodology from respective measurements do not exceed 25% and 0.05, respectively. We find both fine- and coarse-mode particles from all three measurement cases. Fine-mode particles are represented by urban and smoke (haze), whereas coarse-mode particles can be attributed to dust, marine, and pollen aerosols. In summary, the methodology allows us to obtain a more detailed insight into microphysical particle properties.
我们开发了一种新方法,用于从多波长激光雷达测量中更好地识别粒子微物理参数(PMPs)。潜在问题是欠定的,并且与不适定问题类别相关。在本研究中,我们将新方法应用于激光雷达测量。我们研究了如果有关于大气中典型气溶胶混合物(AMs)的气溶胶类型及其气溶胶类型数量的信息,那么由此获得的结果如何能够得到改善。在研究的第一部分,我们开发了一种基于线性估计的气溶胶分型方法,用于复杂气溶胶混合物的解析分离(ATLAS)。ATLAS使我们能够根据激光雷达测量的光学数据将复杂的AM分解为各个气溶胶类型。然后分别考虑从各个气溶胶类型获得的光学数据,并使用我们的自动无监督数据反演方法TiARA(蒂洪诺夫高级正则化算法)将其反演为PMPs。我们将新的两阶段(ATLAS - TiARA)协同方法应用于对应于二组分、三组分和四组分AM的三个激光雷达测量案例。我们用于本研究的测量分别是在ORACLES - 2016和SHADOW野外试验以及法国里尔大学的激光雷达观测框架内进行的。新方法的结果与在ORACLES - 2016试验期间用仪器收集的数据所获得的结果一致。用新方法反演得到的532 nm处的数浓度和单次散射反照率与各自测量值的偏差分别不超过25%和0.05。我们从所有三个测量案例中都发现了细模态粒子和粗模态粒子。细模态粒子由城市气溶胶和烟雾(霾)表示,而粗模态粒子可归因于沙尘、海洋气溶胶和花粉气溶胶。总之,该方法使我们能够更详细地了解粒子的微物理特性。