Suppr超能文献

用于随机流行病模型在线推断的序贯蒙特卡罗平方算法

Sequential Monte Carlo Squared for online inference in stochastic epidemic models.

作者信息

Temfack Dhorasso, Wyse Jason

机构信息

School of Computer Science and Statistics, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland.

School of Computer Science and Statistics, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland.

出版信息

Epidemics. 2025 Sep;52:100847. doi: 10.1016/j.epidem.2025.100847. Epub 2025 Aug 19.

Abstract

Effective epidemic modeling and surveillance require computationally efficient methods that can continuously update parameter estimates as new data becomes available. This paper explores the application of an online variant of Sequential Monte Carlo Squared (O-SMC) to the stochastic Susceptible-Exposed-Infectious-Removed (SEIR) model for real-time epidemic tracking. The advantage of O-SMC lies in its ability to update parameter estimates using a particle Metropolis-Hastings kernel by only utilizing a fixed window of recent observations. This feature enables timely parameter updates and significantly enhances computational efficiency compared to standard SMC, which requires processing all past observations. First, we demonstrate the efficiency of O-SMC on simulated epidemic data, where both the true parameter values and the observation process are known. We then make an application to a real-world COVID-19 dataset from Ireland, successfully tracking the epidemic and estimating a time-dependent reproduction number of the disease. Our results show that O-SMC provides accurate online estimates of both static and dynamic epidemiological parameters while substantially reducing computational cost. These findings highlight the potential of O-SMC for real-time epidemic monitoring and supporting adaptive public health interventions.

摘要

有效的疫情建模和监测需要计算效率高的方法,以便在有新数据可用时能够持续更新参数估计值。本文探讨了顺序蒙特卡洛平方(Sequential Monte Carlo Squared,SMC)的在线变体(O-SMC)在随机易感-暴露-感染-康复(Susceptible-Exposed-Infectious-Removed,SEIR)模型中的应用,用于实时疫情跟踪。O-SMC的优势在于它能够通过仅利用最近观测值的固定窗口,使用粒子梅特罗波利斯-黑斯廷斯(particle Metropolis-Hastings)核来更新参数估计值。与需要处理所有过去观测值的标准SMC相比,这一特性能够实现参数的及时更新,并显著提高计算效率。首先,我们在模拟疫情数据上展示了O-SMC的效率,其中真实参数值和观测过程都是已知的。然后,我们将其应用于来自爱尔兰的真实世界COVID-19数据集,成功跟踪了疫情并估计了该疾病随时间变化的再生数。我们的结果表明,O-SMC在大幅降低计算成本的同时,能够提供静态和动态流行病学参数的准确在线估计。这些发现凸显了O-SMC在实时疫情监测和支持适应性公共卫生干预方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验