Wu Xiaojin, Bai Fan, Li Lun, Gao Yuan, Wang Wencheng, Cai Hongfu
Institute of Machinery and Automation, Weifang University, Weifang, 261061, China.
Shandong Key Laboratory of Intelligent Manufacturing Technology for Advanced Power Equipment, Weifang, China.
Sci Rep. 2025 Aug 25;15(1):31159. doi: 10.1038/s41598-025-16594-1.
Terahertz imaging offers significant potential in areas such as non-destructive testing, security screening, and medical diagnostics. However, due to the immature development of terahertz imaging devices, the field of view remains limited, making it challenging to capture complete target information in a single acquisition. While image stitching techniques can effectively expand the field of view, traditional methods encounter substantial limitations when applied to terahertz images, including low resolution, limited texture features, and inconsistencies arising from parallax. To address these challenges, particularly the parallax inconsistencies in low-resolution terahertz image stitching, we propose an Unsupervised Disparity-Tolerant Terahertz Image Stitching algorithm (UDTATIS). Our approach introduces targeted optimizations for two critical stages: geometric distortion correction and image feature fusion. Specifically, we design a feature extractor and an effective point discrimination mechanism based on the EfficientLOFTR architecture, significantly enhancing feature matching accuracy and robustness. Additionally, we introduce a continuity constraint to ensure the spatial continuity of matched points, thereby mitigating geometric distortions. Furthermore, we develop an improved conditional diffusion model that integrates multi-scale feature fusion with adaptive normalization, refining the transition effects along stitching boundaries. Compared to existing methods, UDTATIS demonstrates superior performance in handling terahertz images characterized by low resolution, limited textures, and parallax, achieving seamless image fusion while maintaining geometric consistency. Extensive quantitative and qualitative evaluations validate that UDTATIS outperforms state-of-the-art stitching algorithms, especially in complex scenes, delivering enhanced visual coherence and structural integrity. Project page: https://github.com/snow-wind-001/UDTATIS .
太赫兹成像在无损检测、安全筛查和医学诊断等领域具有巨大潜力。然而,由于太赫兹成像设备发展不成熟,视野仍然有限,在单次采集过程中获取完整目标信息具有挑战性。虽然图像拼接技术可以有效扩大视野,但传统方法应用于太赫兹图像时存在显著局限性,包括分辨率低、纹理特征有限以及视差导致的不一致性。为应对这些挑战,特别是低分辨率太赫兹图像拼接中的视差不一致问题,我们提出了一种无监督视差容忍太赫兹图像拼接算法(UDTATIS)。我们的方法针对两个关键阶段进行了有针对性的优化:几何失真校正和图像特征融合。具体而言,我们基于EfficientLOFTR架构设计了一个特征提取器和一个有效的点判别机制,显著提高了特征匹配的准确性和鲁棒性。此外,我们引入了连续性约束以确保匹配点的空间连续性,从而减轻几何失真。此外,我们开发了一种改进的条件扩散模型,该模型将多尺度特征融合与自适应归一化相结合,优化了沿拼接边界的过渡效果。与现有方法相比,UDTATIS在处理低分辨率、纹理有限和视差特征的太赫兹图像时表现出卓越性能,在保持几何一致性的同时实现了无缝图像融合。广泛的定量和定性评估验证了UDTATIS优于现有最先进的拼接算法,特别是在复杂场景中,提供了增强的视觉连贯性和结构完整性。项目页面:https://github.com/snow-wind-001/UDTATIS 。