Suppr超能文献

用于智能番茄种植的深度学习驱动的物联网解决方案。

Deep learning-driven IoT solution for smart tomato farming.

作者信息

Saxena Akshit, Agarwal Aayushi, Nagrath Bhavya, Jayavanth Carmel Sanjana, Thulasidoss Shamita, Maheswari S, Sasikumar P

机构信息

School of Electronics Engineering, Vellore Institute of Technology, Vellore, India.

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India.

出版信息

Sci Rep. 2025 Aug 24;15(1):31092. doi: 10.1038/s41598-025-15615-3.

Abstract

The rising food demand and challenges with respect to the climate have made precision agriculture (PA) vital for sustainable crop production. This study presents an IoT-based smart greenhouse platform tailored for tomato farming, integrating environmental sensing and deep learning. The system employs ESP32-based wireless sensors to collect real-time data on soil moisture, temperature, and humidity; this data is transmitted to a cloud dashboard (ThingsBoard) for remote monitoring. A Raspberry Pi equipped with a Pi Camera and a YOLOv8 model classifies tomato ripeness stages-green, half-ripened, and fully ripened-using real greenhouse images. Model optimizations, including quantization, pruning, and TensorRT, improved inference speed by 35% while maintaining 52.8% classification accuracy during our initial stage of the project. Energy profiling revealed daily consumption of 8.91 Wh for the ESP32 sensors and 78 Wh for the Raspberry Pi. This prototype demonstrates real-time monitoring, high model precision, and practical energy insights, paving the way for multi-node scalability and edge AI enhancements. Future work will explore incorporating Edge TPU for faster on-device processing, LoRa for low-power, long-distance data transfer, and automated control of irrigation and ventilation systems to realize a fully autonomous smart greenhouse.

摘要

不断增长的粮食需求以及气候方面的挑战使得精准农业(PA)对于可持续作物生产至关重要。本研究提出了一个专为番茄种植量身定制的基于物联网的智能温室平台,集成了环境传感和深度学习。该系统采用基于ESP32的无线传感器来收集土壤湿度、温度和湿度的实时数据;此数据被传输到云仪表板(ThingsBoard)进行远程监控。配备Pi摄像头和YOLOv8模型的树莓派使用真实温室图像对番茄成熟阶段(绿色、半成熟和完全成熟)进行分类。在项目初始阶段,包括量化、剪枝和TensorRT在内的模型优化将推理速度提高了35%,同时保持了52.8%的分类准确率。能源分析显示,ESP32传感器的每日耗电量为8.91瓦时,树莓派的每日耗电量为78瓦时。该原型展示了实时监测、高模型精度和实际能源洞察,为多节点可扩展性和边缘人工智能增强铺平了道路。未来的工作将探索集成Edge TPU以实现更快的设备上处理、使用LoRa进行低功耗、长距离数据传输以及自动控制灌溉和通风系统,以实现完全自主的智能温室。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abdb/12375779/9396c50163a1/41598_2025_15615_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验